首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reactivity of 3-aminophenylboronic acid toward 3,5-disubstituted salicylaldehyde derivatives (R = tBu, MeO, I, Br, NO2) was analyzed with the aim to synthesize macrocyclic boron compounds having a calix-like structure. The three-component condensation was carried out using different aliphatic alcohols (ROH, R = Me, Et, nPr, nBu, nPn, nHex) in order to replace the free B-OH groups by B-OR moieties and their effect on the structural and physicochemical properties of the resulting compounds was analyzed. When the reaction was carried out under reflux conditions, trimeric calix-like compounds are formed for the 3,5-tButyl salicylaldehyde derivatives. The absence of alcohol molecules during the reaction lead to the condensation of two calixarenes through two of the three B(OH) groups to form two B-O-B moieties, giving place to the formation of a hexanuclear cage. Using the salicylaldehyde derivatives having I, Br and NO2 groups, the Schiff bases resulting from the condensation reaction of the aldehyde and the boronic acid were isolated providing thus evidence for the previously proposed reaction sequence for the formation of the calix-shaped compounds.  相似文献   

2.
Structural chemistry of organometallic complexes containing pyrazolederived polydentate ligands (without boron) has been reviewed in the context of current results from this laboratory. NCL Communication No. 6137  相似文献   

3.
4.
The development of a model system to study ruthenium-olefin complexes relevant to the mechanism of olefin metathesis has been reported recently. Upon addition of the ligand precursor 1,2-divinylbenzene to [RuCl(2)(Py)(2)(H(2)IMes)(==CHPh)] (H(2)IMes=1,3-dimesityl-4,5-dihydroimidazol-2-ylidene), two ruthenium-olefin adducts are formed. Based on (1)H NMR spectroscopy experiments and X-ray crystallographic analysis, these complexes are assigned as side-bound isomers in which the olefin and H(2)IMes ligands are coordinated cis to each other. Herein is reported an investigation of the generality of these observations through variation of the N-heterocyclic carbene ligand and the ligand precursor.  相似文献   

5.
Three novel stable complexes of manganese were prepared by interaction of [(η5-C5H5)Mn(CO)2 (THF)] with phenylacetylene. X-ray structure analysis of two of the complexes established the presence of a phenylvinylidene ligand. In [(η5-C5H5Mn(CO)2(CCHPh)] this ligand forms an unusual double MnC bond and in [(η5-C5H5)Mn2(CO)4(CCHPh)] it acts as a bridge strengthening the MnMn bond.  相似文献   

6.
The synthesis, characterization, electrochemistry, photophysics and photochromic behavior of a new class of cyclometalated platinum(II) complexes [Pt(C(∧)N)(O(∧)O)] (1a-5a and 1b-5b), where C(∧)N is a cyclometalating 2-(2'-thienyl)pyridyl (thpy) or 2-(2'-thienothienyl)pyridyl (tthpy) ligand containing the photochromic dithienylethene (DTE) unit and O(∧)O is a β-diketonato ligand of acetylacetonato (acac) or hexafluoroacetylacetonato (hfac), have been reported. The X-ray crystal structures of five of the complexes have also been determined. The electrochemical studies reveal that the first quasi-reversible reduction couple, and hence the nature of lowest unoccupied molecular orbital (LUMO) of the complexes, is sensitive to the nature of the ancillary O(∧)O ligands. Upon photoexcitation, complexes 1a-3a and 1b-3b exhibit drastic color changes, ascribed to the reversible photochromic behavior, which is found to be sensitive to the substituents on the pyridyl ring and the extent of π-conjugation of the C(∧)N ligand as well as the nature of the ancillary ligand. The thermal bleaching kinetics of complex 1a has been studied in toluene at various temperatures, and the activation barrier for the thermal cycloreversion of the complex has been determined. Density functional theory (DFT) calculations have been performed to provide an insight into the electrochemical, photophysical and photochromic properties.  相似文献   

7.
Magnetic resonance imaging is a commonly used diagnostic method in medicinal practice as well as in biological and preclinical research. Contrast agents (CAs), which are often applied are mostly based on Gd(III) complexes. In this paper, the ligand types and structures of their complexes on one side and a set of the physico-chemical parameters governing properties of the CAs on the other side are discussed. The solid-state structures of lanthanide(III) complexes of open-chain and macrocyclic ligands and their structural features are compared. Examples of tuning of ligand structures to alter the relaxometric properties of gadolinium(III) complexes as a number of coordinated water molecules, their residence time (exchange rate) or reorientation time of the complexes are given. Influence of the structural changes of the ligands on thermodynamic stability and kinetic inertness/lability of their lanthanide(III) complexes is discussed.  相似文献   

8.
9.
Different strategies to improve the excited state properties of polypyridinic complexes by varying ligand structure and molecular geometry are described. Bidentate and tetradentate ligands based on fragments as dipyrido[3,2-a:2′,3′-c]phenazine, dppz, and pyrazino[2,3-f][1,10]-phenanthroline, ppl, have been used. Quinonic residues were fused to these basic units to improve acceptor properties. Photophysical studies were performed in order to test theoretical predictions.  相似文献   

10.
A series of homoleptic complexes with non-innocent ligands derived from N,N'-bis(pentafluorophenyl)-o-phenylenediamine (H(2)(F)pda) are reported. [Ni(II)((F)sbqdi)(2)] (1), [Pd(II)((F)sbqdi)(2)] (2), [Co(II)((F)sbqdi)(2)] (3), and [Cu(II)((F)sbqdi)(2)] (4) were synthesized, where ((F)sbqdi)(1-) represents a radical anion formed by one-electron oxidation of the doubly deprotonated H2(F)pda. The oxidation states of ligands and metals in complexes 1-4 were assigned by single crystal X-ray crystallography performed at low temperatures. Complex 4 is the first Cu(II) complex where both o-phenylenediamine derived ligands are monoanionic radicals. The bulky N-C6F5 substituents force the complexes 1, 3, and 4 to adopt a twisted geometry (intermediate between square-planar and tetrahedral). The electronic structures of the neutral compounds 1-4 and of some of their cationic and/or anionic neighboring redox states were probed using EPR and UV-VIS-NIR spectroelectrochemistry. The twisted geometry of the complexes results in considerable changes in their electronic structures compared to the well known square-planar complexes while the strongly electron withdrawing N-C6F5 groups have a great influence on redox properties.  相似文献   

11.
A new bis-tetradentate acyclic amine ligand L(Et) has been synthesized from 4,6-bis(aminomethyl)-2-phenylpyrimidine and 2-vinylpyridine. Dinuclear complexes, Mn(II)(2)L(Et)(MeCN)(H(2)O)(3)(ClO(4))(4) (1), Fe(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (2), Co(II)(2)L(Et)(H(2)O)(3)(MeCN)(2)(BF(4))(4) (3), Ni(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (4), Ni(II)(2)L(Et)(H(2)O)(4)(ClO(4))(4)·8H(2)O (4'), Cu(II)(2)L(Et)(BF(4))(4)·MeCN (5), Zn(II)(2)L(Et)(BF(4))(2)(BF(4))(2)·?MeCN (6), were obtained from 1 : 2 reactions of L(Et) and the appropriate metal salts in MeCN, whereas in MeOH tetranuclear complexes, Mn(II)(4)(L(Et))(2)(OH)(4)(ClO(4))(4) (7), Fe(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·5/2H(2)O (8), Co(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (9), Ni(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·4H(2)O (10), Cu(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (11) and Zn(II)(4)(L(Et))(2)(F)(4)(BF(4))(4) (12), result. Six complexes have been structurally characterized: in all cases each L(Et) is bis-tetradentate and provides a pyrimidine bridge between two metal centres. As originally anticipated, complexes 1, 4' and 6 are dinuclear, while 9, 10 and 12 are revealed to be tetranuclear, with two M(2)(L(Et))(4+) moieties bridged by two pairs of fluoride anions. Weak to moderate antiferromagnetic coupling between the metal centres is a feature of complexes 2, 3, 4, 8, 9 and 10. The dinuclear complexes 1-6 undergo multiple, mostly irreversible, redox processes. However, the pyrimidine-based dicopper(II) complex 5 undergoes a two electron quasi-reversible reduction, Cu(II)(2)→ Cu(I)(2), and this occurs at a more positive potential [E(m) = +0.11 V (E(pc) = -0.03 and E(pa) = +0.26 V) vs. 0.01 M AgNO(3)/Ag] than for either of the dicopper(II) complexes of the analogous pyrazine-based ligands.  相似文献   

12.
Density functional theory has been used to study the trans-influence of Rh–Rh and Rh–L bonds in dirhodium(II) tetracarboxylates with axial ligands L=H2O, pyridine, CO, triphenylphosphine, NO and NO2. The absence of the chemical bond between metal atoms in Rh2(μ-O2CR)4(NO)2 complexes and the formation of two covalent Rh–NO bonds explain the very long Rh–Rh and very short Rh–N distances in these compounds.  相似文献   

13.
The extraction of the pertechnetate anion has been investigated in the systems tributylphosphate (TBP)—solvent (carbon tetrachloride, n-heptane, chloroform)—metal salt (uranyl nitrate and chloride, thorium nitrate)—ammonium salt. In the absence of a metal, the solvates HTeO4. iTBP (i=4) are extracted, while in the presence of uranium and thorium, the distribution of technetium corresponds to the formation of the mixed complexes: UO2(NO3)(TeO4)·2TBP, UO2Cl(TcO4)·2TBP and Th(NO3)3 (TcO1)·2TBP. The effective constants of the reactions H++TcO 4 +i(TBP)org←(HTcO1·iTBP)org, and (MLn·2TBP)org+TcO 4 ←(MLn−1TcO4·2TBP)org+L were established in the above systems. The extraction of pertechnetate ion is more effective when it is coordinated to a cation solvated by TBP than the extraction in the form of pertechnetate acid solvated by TBP.  相似文献   

14.
15.
Dinuclear Ni(II), Co(II) and Zn(II) complexes of general formula $ \left[ {{\text{M}}_{ 2}^{\text{II}} {\text{Cl}}_{ 4} \left( {\text{HL}} \right)_{ 4} \left( {\text{i-PrOH}} \right)_{ 2} \cdot 2\left( {\text{i-PrOH}} \right)} \right] $ with a carbacylamidophosphate ligand, namely 2,2,2-trichloro-N-(dipiperidine-1-yl-phosphoryl)acetamide (CCl3C(O)N(H)P(O)[N(CH2)5]2), were synthesized and characterized by physicochemical and spectroscopic methods. Electronic absorption spectra of the nickel and cobalt complexes were measured at room temperature in toluene and in the solid state. The crystal structures of HL and [Ni2Cl4(HL)4(i-PrOH)2·2(i-PrOH)] have been determined by single-crystal XRD studies. Earlier, the structure of a monoclinic C2/c modification of HL was reported. In this paper, redetermination of the structure of HL with triclinic crystal system, P $ \overline{1} $ , was made. The nickel complex is a chloro-bridged dimer, in which the Ni(II) centers are in a distorted octahedral geometry and the neutral HL is coordinated via its phosphoryl oxygen atom. This coordination mode was determined for the first time for 3D metal carbacylamidophosphate complexes.  相似文献   

16.
New divalent Co, Ni, Zn and Cd pyrazinecarboxylate hydrazinates of the formulae M(pyzCOO)2·nN2H4·xH2O and Mpyz(COO)2·N2H4·xH2O obtained by the reaction of respective metal nitrate hydrates with 2-pyrazinecarboxylic (HpyzCOO)/2,3-pyrazinedicarboxylic (H2pyz(COO)2) acid and hydrazine hydrate have been characterized on the basis of analytical, spectroscopic (electronic and infrared), thermal and X-ray powder diffraction studies. The electronic spectroscopic data suggest that the cobalt and nickel complexes are of spin-free (high-spin) type with octahedral geometry. The IR absorption bands of N-N stretching in the range 980-972 cm-1 unambiguously prove the bidentate bridging nature of the N2H4 ligand. The hydrazinate complexes of 2,3-pyrazinedicarboxylate lose hydrazine molecule exothermally, whereas 2-pyrazinecarboxylate compounds lose the same endothermally. Further, all the complexes undergo endothermic (dehydration and/or dehydrazination) followed by exothermic decomposition except the Zn and Cd complexes of 2,3-pyrazinedicarboxylate, which show only exothermic decomposition. In order to know the isomorphic nature among the complexes, the X-ray powder patterns have been compared.  相似文献   

17.
The Gd(3+), Tb(3+), and Eu(3+) complexes of a bis-bipyridine-phenylphosphine oxide ligand PhP(O)(bipy)(2) 1 (bipy for 6-methylene-6'-methyl-2,2'-bipyridine) have been synthesized. In acetonitrile solutions at room temperature, the Tb(3+) and Eu(3+) complexes show a metal-centered luminescence, indicative of an efficient energy transfer from the two bipy subunits to the Ln center. The photophysical properties drastically depend on the nature of the anions present in solution. In particular, addition of 2 equiv of nitrate anions to a solution containing the [Ln.1](OTf-)(3) leads to an 11-fold increase of the luminescence intensity for the Eu(3+) and a 7-fold increase for the Tb(3+) complexes. Similar effects are provided with Cl-, F-, and CH(3)COO- anions. UV-vis titration experiments were used to determine association constants for binding of, respectively, one, two, and three anions. Stepwise anion addition has also been investigated on the molecular level using quantum mechanical (QM) calculations for the Eu complexes. These calculations reproduce the experimental findings, especially if solvent molecule addition is taken into account. The X-ray crystal structure of the nitrate salt of the Tb complex, as well as QM calculation of a similar Eu complex, demonstrates the coordination of three nitrate anions in a bidentate mode and the step-by-step relegation of the bipy subunits in the second coordination sphere. These features give valuable insights into the mechanism of the overall light amplification process.  相似文献   

18.
Peng R  Li D  Wu T  Zhou XP  Ng SW 《Inorganic chemistry》2006,45(10):4035-4046
This work focuses on the systematic investigation of the influences of pyrimidine-based thioether ligand geometries and counteranions on the overall molecular architectures. A N-containing heterocyclic dithioether ligand 2,6-bis(2-pyrimidinesulfanylmethyl)pyridine (L1) and three structurally related isomeric bis(2-pyrimidinesulfanylmethyl)benzene (L2-L4) ligands have been prepared. On the basis of the self-assembly of CuX (X = I, Br, Cl, SCN, or CN) and the four structurally related flexible dithioether ligands, we have synthesized and characterized 10 new metal-organic entities, Cu4(L1)2I4 1, Cu4(L1)2Br4 2, [Cu2(L2)2I2.CH3CN]n 3, [Cu(L3)I]n 4, [Cu(L3)Br]n 5, [Cu(L3)CN]n 6, [Cu(L4)CN]n 7, [Cu2(L4)I2]n 8, [Cu2(L4)(SCN)2]n 9, and [[Cu6I5(L4)3](BF4).H2O]n 10, by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that the 10 Cu(I) complexes possess an increasing dimensionality from 0D (1 and 2) to 1D (3-5) to 2D (6-9) to 3D (10), which indicates that the ligand geometry takes an essential role in the framework formation of the Cu(I) complexes. The influence of counteranions and pi-pi weak interactions on the formation and dimensionality of these coordination polymers has also been explored. In addition, the photoluminescence properties of Cu(I) coordination polymers 4-10 in the solid state have been studied.  相似文献   

19.
Summary Equilibrium studies of mixed ligand complexes of palladium(II) containing diethylenetriamine as a primary ligand and amino acids as secondary ligands were made by the pH titration method at 25° C and ionic strengthM=0.1. Different equilibrium constants, characteristic of binary and mixed ligand complexes were calculated and the chelation mode was deduced from conductivity measurements.  相似文献   

20.
New chiral bidentate phoshine thiazoles have been prepared and successfully applied as ligands in the homogeneous iridium-catalyzed asymmetric hydrogenation of aryl alkenes and aryl alkene esters. The ligands are designed to be highly modular and have one common chiral intermediate, from which diversity can be introduced at a late stage in the synthetic pathway. It was found that a six-member-ring backbone of the rigid ligand structure was preferred over seven- or five-member rings. In this study it is shown that the substituent pattern of the ligands has a major influence on the stereochemical outcome of the products. By applying the selectivity model proposed in this study, it is possible to match different substrates against different catalysts. In this way, good to excellent enantioselectivity can be obtained for typically difficult substrates. Geometrically different derivatives of alpha- and beta-methyl cinnamic acid ethyl esters were hydrogenated, to demonstrate the validity of the selectivity model and to verify the importance of steric and electronic matching of the catalyst and the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号