首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional interaction of outer membrane proteins of E. coli can be studied using phage and colicin receptors which are essential components of penetration systems. The uptake of ferric iron in the form of the ferrichrome complex requires the ton A and ton B functions in the outer membrane of E. coli. The ton A gene product is the receptor protein for phage T5 and is required together with the ton B function by the phages T1 and ?80 to infect cells and by colicin M and the antibiotic albomycin, a structural analogue of ferrichrome, to kill cells. The ton B function is necessary for the uptake of ferric iron complexed by citrate. Iron complexed by enterochelin is only transported in the presence of the ton B and feu functions. Cells which have lost the feu function are resistant to the colicins B, I or V while ton B mutants are resistant to all 3 colicins. The interaction of the ton A, ton B, and feu functions apparently permits quite different "substrates" to overcome the permeability barrier of the outer membrane. It was shown for ferrichrome dependent iron uptake that the complexing agent was not altered and could be used repeatedly. Only very low amounts of 3H-labeled ferrichrome were found in the cell. It is possible that the iron is mobilized in the membrane and that desferri-ferrichrome is released into the medium without having entered the cytoplasm. Growth on ferrichrome as the sole iron source was used to select revertants of T5 resistant ton A mutants. All revertants exhibited wild-type properties with the exception of partial revertants. In these 4 strains, as in the ton A mutants, the ton A protein was not detectable by SDS polyacrylamide gel electrophoreses of outer membranes. Albomycin resistant mutants were selected and shown to fall into 5 categories: 1) ton A; 2) ton B mutants; 3) mutants with no iron transport defects and normal ton A/ton B functions, which might be target site mutants; 4) mutants which were deficient in ferrichrome-mediated iron uptake but had normal ton A/ton B functions. We tentatively consider that the defect might be located in the active transport system of the cytoplasmic membrane; 5) a variety of mutants with the following general properties: most of them were resistant to colicin M, transported iron poorly, and, like ton B mutants, contained additional proteins in the outer membrane. The outer membrane protein patterns of wild-type and ton B mutant strains were compared by slab gel electrophoresis in an attempt to identify a ton B protein. It was observed that under most growth conditions, ton B mutants overproduced 3 proteins of molecular weights 74,000-83,000. In extracted, iron-deficient medium, both the wild-type and ton B mutant strains had similar large amounts of these proteins in their outer membranes. The appearance of these proteins was suppressed by excess iron in both wild-type and mutant. From this evidence it is apparent that the proteins appear as a response to low intracellular iron rather than being controlled by the ton B gene...  相似文献   

2.
An investigation of the hydration of the siderophore ferrichrome A has been carried out by the Monte-Carlo method. It has been shown that the ligands and the iron atom interact weakly with water. The four carbonyl groups of the peptide ring of the molecule, with which hydrogen bonds are formed by six water molecules, and the side-chain carboxyl groups, with each of which a hydrogen bond is formed by one water molecule, interact most strongly with the aqueous phase. Evaluations of the free energy of hydration of the molecule have been carried out. The different activities of the siderophores of the ferrichrome family have been explained on the basis of the calculations. It has been postulated that the bonding of ferrichromes to a membrane receptor is effected by means of the peptide ring of the molecule. The transport of ferrichrome A through the interior of a membrane is energetically considerably more difficult than that of ferrichrome, since it is associated with dehydration of the side-chain carboxyl groups of the molecule.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 24, No. 2, pp. 167–172, March–April, 1988.  相似文献   

3.
A complete characterization of the aqueous solution Fe(III) and Fe(II) coordination chemistry of a saccharide-based ferrichrome analogue, 1-O-methyl-2,3,6-tris-O-[4-(N-hydroxy-N-ethylcarbamoyl)-n-butyryl]-alpha-D-glucopyranoside (H3LN236), is reported including relevant thermodynamic parameters and growth promotion activity with respect to both Gram-negative and Gram-positive bacterial strains. The saccharide platform is an attractive backbone for the design and synthesis of ferrichrome analogues because of its improved water solubility and hydrogen-bonding capabilities, which can potentially provide favorable receptor recognition and biological activity. The ligand deprotonation constants (pKa values), iron complex (FeIII(LN236) and FeII(LN236)1-) protonation constants (KFeHxL-236-N), overall Fe(III) and Fe(II) chelation constants (beta110), and aqueous solution speciation were determined by spectrophotometric and potentiometric titrations, EDTA competition equilibria, and cyclic voltammetry. Log betaIII110 = 31.16 and pFe = 26.1 for FeIII(LN236) suggests a high affinity for Fe(III), which is comparable to or greater than ferrichrome and other ferrichrome analogues. The E1/2 for the FeIII(LN236)/FeII(LN236)1- couple was determined to be -454 mV (vs NHE) from quasi-reversible cyclic voltammograms at pH 9. Below pH 6.5, the E1/2 shifts to more positive values and the pH-dependent E1/2 profile was used to determine the FeII(LN236)1- protonation constants and overall stability constant log betaII110 = 11.1. A comparative analysis of similar data for an Fe(III) complex of a structural isomer of this exocyclic saccharide chelator (H3LR234), including strain energy calculations, allows us to analyze the relative effects of the pendant arm position and hydroxamate moiety orientation (normal vs retro) on overall complex stability. A correlation between siderophore activity and iron coordination chemistry of these saccharide-hydroxamate chelators is made.  相似文献   

4.
贾兰齐  江焕峰 《有机化学》1999,19(4):356-363
γ-氨基丁酸(GABA)类似物有着强烈而有趣的生理活性,有些已应用于中枢神经系统疾病的临床治疗。综述了近二十几年以来γ-氨基酸类似物的不同合成方法。  相似文献   

5.
The coordination chemistry of a saccharide-based ferrichrome analogue, 1-O-methyl-2,3,4-tris-O-[4-(N-hydroxy-N-methylcarbamoyl)-n-butyrate]-alpha-d-glucopyranoside (H(3)L), is reported, along with its pK(a) values, Fe(III) and Fe(II) chelation constants, and aqueous-solution speciation as determined by spectrophotometric and potentiometric titration techniques. The use of a saccharide platform to synthesize a hexadentate trihydroxamic acid chelator provides some advantages over other approaches to ferrichrome models, including significant water solubility and hydrogen-bonding capability of the backbone that can potentially provide favorable receptor recognition and biological activity. The pK(a) values for the hydroxamate moieties were found to be similar to those of other trihydroxamates. Proton-dependent Fe(III)-H(3)L and Fe(II)-H(3)L equilibrium constants were determined using a model involving the sequential protonation of the iron(III)- and iron(II)-ligand complexes. These results were used to calculate the formation constants, log beta(110) = 31.86 for Fe(III)L and 12.1 for Fe(II)L(-). The calculated pFe value of 27.1 indicates that H(3)L possesses an Fe(III) affinity comparable to or greater than those of ferrichrome and other ferrichrome analogues and is thermodynamically capable of removing Fe(III) from transferrin. E(1/2) for the Fe(III)L/Fe(II)L(-) couple was determined to be -436 mV from quasi-reversible cyclic voltammograms at pH = 9, and the pH-dependent E(1/2) profile was used to determine the Fe(II)L(-) protonation constants.  相似文献   

6.
Iron is an essential element in many biological systems, and in spite of its abundance (5% of the earth crust), its availability is dramatically limited by the very high insolubility of iron(III) at physiological pHs where the concentration of free iron(III) is less than 10?17 M, a value which is much too low to allow any possible growth to aerobic microorganisms. Iron metabolization by the microorganisms necessitates generally the biosynthesis of low molecular weight compounds (300 to 2000 Da) called siderophores. These molecules which are generally excreted into the culture medium, chelate very strongly iron(III), solubilize it and transport it into the cells using an ATP‐dependent high affinity transport system. For nearly fourty years, the structural studies on siderophores have shown a great diversity of structures for these iron‐chelating molecules synthesized by microorganisms. These structures are characterized by the presence of one, two and in most cases, three bidentate chelating groups, generally oxygenated, necessary for the formation of very stable hexacoordinated octahedric complexes between the siderophores and iron(III). These groups are generally either catecholates, or hydroxamates or hydroxyacids, but can be any other bidentate groups In what follows several typical examples of siderophores belonging to each of these categories are given. It is clear that considering the very high number of siderophores having so many different structures so far isolated and characterized (more than 200), we have restricted this report to the most representative structures of each category, with a special emphasis to pyoverdins, the fluorescent peptidic siderophores of the fluorescent pseudomonads. Similarly the siderophore‐mediated iron‐transport mechanisms of Gram‐negative bacteria described therafter will report mainly on those of Escherichia coli with a special emphasis to Pseudomonas when information is available. The pyoverdin‐mediated iron‐transport in fluorescent pseudomonads implies biochemical mechanisms which involve signal and energy exchanges between the two membranes across the periplasmic space. The energy transduction mechanism in the case of the pyoverdin‐mediated active transport in P. aeruginosa has not been completely elucidated so far. Nevertheless from the data obtained for ferric enterobactin and ferrichrome in E. coli, it is plausible that a common mechanism of transport can take place for all the enterobacteria. The key element of this mechanism is protein TonB in E. coli, head of a series of TonB proteins having a very close structure and characterized in P. putida WCS358 and P. aeruginosa ATCC 156942. The striking similarities existing between the various iron‐transport steps in these different bacterial species is highly in favour of a common energy‐dependent siderophore‐mediated iron‐transport mechanism in microorganisms.  相似文献   

7.
High-quality biocompatible magnetic iron oxide (Fe3O4) nanocrystals were developed through a ligand exchange process of hydrophobically capped nanocrystals with hydrophilic molecules. By simple modulation of the nanocrystal surface ligand charge properties, we have been able to prepare magnetic nanocrystals with excellent intracellular labeling capabilities that efficiently label a variety of cell types without the need for additional transport facilitating agents. The excellent intracellular labeling capability of the newly developed cationic WSIO has further led to successful MRI monitoring of the migration of neural stem cells in rat spinal cord. The magnetic nanocrystals developed here have great potential in applications for labeling of various cell types and also the monitoring of cell-based medical treatments and cancer metastasis.  相似文献   

8.
Summary The MULTIple Computer Automated Structure Evaluation (MULTICASE) methodology has been used to study the quantitative structure-agonist activity relationship of a series of capsaicin agonists. A number of substructures and physicochemical properties of capsaicin analogues were identified as being responsible for high agonist potency. The optimal log P value for the agonist potency as estimated from QSAR analysis is 5.12. It was also found that a cluster of inactive molecules in the database have lipophilicity values below 2.94. Molecular modeling was employed to elucidate the detailed structural features of the pharmacophore of capsaicin analogues. Systematic conformational analysishas shown that the activity of capsaicin analogues strongly depends upon their ability to reach the required conformational profile. Based upon these observations, a three-dimensional pharmacophore model for the capsaicin-receptor interactions is proposed.  相似文献   

9.
Previously, an artificial siderophore complex, the iron(III) complex with tris[2-[(N-acetyl-N-hydroxy)glycylamino]ethyl]amine (TAGE), was constructed in order to understand the effect of intramolecular hydrogen bonding interaction on the siderophore function, and its structural characterization in the solid state was reported (Inorg. Chem. 2001, 40, 190). In this paper, the solution behavior of the M(III)-TAGE (M = Fe, Ga) system has been investigated using (1)H NMR, UV-vis, and FAB mass spectroscopies in efforts to characterize the biological implication of hydrogen bonding networks between the amide hydrogens and coordinating aminohydroxy oxygens of the complex. The temperature dependence of (1)H NMR spectra for Ga(III) complex of TAGE indicates that hydrogen bonding networks are maintained in polar solvents such as DMSO-d(6) and D(2)O. The UV-vis spectra of the Fe(III)-TAGE system under various pH conditions have shown that TAGE forms a tris(hydroxamato)iron(III) complex in an aqueous solution in the pH range 4-8. By contrast, tris[2-[(N-acetyl-N-hydroxy)propylamido]ethyl]amine (TAPE; TAGE analogue that is difficult to form intramolecular hydrogen bonding networks), which has been synthesized as a comparison of TAGE, forms both of bis- and tris(hydroxamato)iron(III) complexes in the same pH range. Both the stability constants (log beta(FeTAGE) = 28.6; beta(FeTAGE) = [Fe(III)TAGE]/([Fe(3+)][TAGE(3)(-)])) and pM (-log[Fe(3+)]) value for Fe(III)TAGE (pM 25) are comparable to those of a natural siderophore ferrichrome (log beta = 29.1 and pM 25.2). The kinetic study of the TAGE-Fe(III) system has given the following rate constants: the rate of the ligand exchange reaction between Fe(III)TAGE and EDTA is 6.7 x 10(-4) s(-1), and the removal rates of iron from diferric bovine plasma transferrin by TAGE are 2.8 x 10(-2) and 6.0 x 10(-3) min(-1). These values are also comparable to those of a natural siderophore desferrioxamine B under the same conditions. In a biological activity experiment, TAGE has promoted the growth of the siderophore-auxotroph Gram-positive bacterium Microbacterium flavescens, suggesting that TAGE mimics the activity of ferrichrome. These results indicate that the artificial siderophore with intramolecular hydrogen bonding networks, TAGE, is a good structural and functional model for a natural ferrichrome.  相似文献   

10.
Two new types of unsymmetrical bis(thiosemicarbazone) proligands and their neutral zinc(II) and copper(II) complexes have been synthesized. These bifunctional ligands both chelate the metal ions and provide pendent amino groups that can be readily functionalized with biologically active molecules. Functionalization has been demonstrated by the synthesis of three water-soluble glucose conjugates of the new zinc(II) bis(thiosemicarbazonato) complexes, and their copper(II) analogues have been prepared in aqueous solution via transmetalation. A range of techniques including NMR, electron paramagnetic resonance, cyclic voltammetry, high-performance liquid chromatography (HPLC), UV/vis, and fluorescence emission spectroscopy have been used to characterize the complexes. Four compounds, including two zinc(II) complexes, have been characterized by X-ray crystallography. The connectivity and conformation of the glucose conjugates have been assigned by NMR spectroscopy. Time-dependent density functional theory calculations have been used to assign the electronic transitions of the copper(II) bis(thiosemicarbazonato) chromophore. Two copper-64-radiolabeled complexes, including one glucose conjugate, have been prepared and characterized using radio-HPLC, and transmetalation is shown to be a viable method for radiolabeling compounds with copper radionuclides. Preliminary cell washout studies have been performed under normoxic conditions, and the uptake and intracellular distribution have been studied using confocal fluorescence microscopy.  相似文献   

11.
Linker molecules are amphiphiles that segregate near the microemulsion membrane either near the surfactant tail (lipophilic linkers) or the surfactant head group (hydrophilic linkers). The idea of the lipophilic linkers was introduced a decade ago as a way to increase the surfactant–oil interaction and the oil solubilization capacity. Long chain (>9 tail carbons) alcohols were first used as lipophilic linkers. Later it was found that the solubilization enhancement plateaus (saturates) above a certain lipophilic linker concentration. Hydrophilic linkers have been recently introduced as a way to compensate for the saturation effect observed for lipophilic linkers. Hydrophilic linkers are surfactant-like molecules with 6–9 tail carbons that coadsorb with the surfactant at the oil/water interface, thereby increasing the surfactant–water interaction, but have a poor interaction with the oil phase due to their short tail. A special synergism emerges when combining hydrophilic and lipophilic linkers, which further increases the solubilization enhancement over lipophilic linkers alone. We will discuss the profound impact of linker molecules on interfacial properties such as characteristic length, interfacial rigidity and dynamics (coalescence, solubilization and relaxation experiments) of the interface. We also demonstrate how these properties affect the performance of cleaning formulations designed around linker molecules. We describe linker-based formulations for a wide range of oils, including highly hydrophobic oils (e.g. hexadecane) that have proven very hard to clean. We also report on the use of ‘extended’ surfactants as an alternative to self-assembled linker systems.  相似文献   

12.
Tao Zhou  Zu D. Liu 《Tetrahedron letters》2004,45(51):9393-9396
Two novel iron(III)-selective hexadentate chelator-terminated dendrimers have been synthesized in high yields. MALDI-TOF mass spectra demonstrate that both dendritic chelators bind iron(III) efficiently. Preliminary studies show that these molecules possess a high affinity for iron(III).  相似文献   

13.
In the present study, quantum dot (QD) capped magnetite nanorings (NRs) with a high luminescence and magnetic vortex core have been successfully developed as a new class of magnetic-fluorescent nanoprobe. Through electrostatic interaction, cationic polyethylenimine (PEI) capped QD have been firmly graft into negatively charged magnetite NRs modified with citric acid on the surface. The obtained biocompatible multicolor QD capped magnetite NRs exhibit a much stronger magnetic resonance (MR) T2* effect where the r2* relaxivity and r2*/r1 ratio are 4 times and 110 times respectively larger than those of a commercial superparamagnetic iron oxide. The multiphoton fluorescence imaging and cell uptake of QD capped magnetite NRs are also demonstrated using MGH bladder cancer cells. In particular, these QD capped magnetite NRs can escape from endosomes and be released into the cytoplasm. The obtained results from these exploratory experiments suggest that the cell-penetrating QD capped magnetite NRs could be an excellent dual-modality nanoprobe for intracellular imaging and therapeutic applications. This work has shown great potential of the magnetic vortex core based multifunctional nanoparticle as a high performance nanoprobe for biomedical applications.  相似文献   

14.
Iron(II) triazolate coordination polymers with lipophilic sulfonate counterions with alkyl chains of different lengths have been synthesized. In hydrocarbon solvents, these polymers formed a physical gel and showed a thermoreversible spin transition upon the sol–gel phase transition. The formation of a hydrogen‐bonding network between the triazolate moieties and sulfonate ions, bridged by water molecules, was found to play an important role in the spin‐crossover event. The spin‐transition temperature was tuned over a wide range by adding a small amount of 1‐octanol, a scavenger for hydrogen‐bonding interactions. This additive was essential for the iron(II) species to adopt a low‐spin state. Compared with nongelling references in aromatic solvents, the spin‐crossover physical gels are characterized by their quick thermal response, which is due to a rapid restoration of the hydrogen‐bonding network, possibly because of a dynamic structural ordering through an enhanced lipophilic interaction of the self‐assembling components in hydrocarbon solvents.  相似文献   

15.
The battery industry is seeking solutions for large-scale energy storage that are affordable, durable, and safe. Aqueous redox flow batteries (RFBs) have the inherent properties to meet these requirements. While much has been learned over the past decade on the properties of redox materials, the focus of next-generation systems must be primarily on lowering redox material cost and increasing durability. In this context, in addition to inexpensive materials such as iron salts, redox couples based on small organic molecules have shown significant promise. A considerable level of understanding has been gained on the factors affecting the durability of aqueous RFB systems, specifically relating to molecular stability and crossover. New molecular classes, substituent strategies, and cell configurations have been identified to enhance the durability of systems in the future. Next-generation systems will also need to focus on designing molecules for achieving high energy efficiency and power density as well. Furthermore, the application of computational methods for screening of chemical stability could accelerate discovery of new molecular architectures.  相似文献   

16.
Novel amphiphilic cyclic disaccharide analogues, in which the saccharide units are connected through stable phosphodiester linkages (CyPLOS, Cyclic Phosphate-Linked OligoSaccharides) and decorated with long lipophilic tentacles at the 2- and 3-OH moieties, have been synthesized. Their propensity to self-aggregation has been investigated by means of 1H and 31P NMR experiments, making it possible to determine for these macrocycles critical aggregation concentration values in the millimolar range.  相似文献   

17.
Borate binding to siderophores: structure and stability   总被引:2,自引:0,他引:2  
Well-known as specific iron chelating agents produced by bacteria, it is shown that some, but not all, siderophore classes have an unexpected binding affinity for boron. The relevant criterium is the availability of a vicinal dianionic oxygen containing binding group (i.e., citrate or catecholate). The resulting boron complexes have been characterized by ESI-MS, multinuclear NMR, and DFT calculations. Detailed boron binding constants have been measured for vibrioferrin, rhizoferrin, and petrobactin. The observed affinity of certain siderophores for borate, a common chemical species in the marine but not the terrestrial environment, allows for small, but potentially significant, concentrations of B-siderophores to exist at oceanic pH. We hypothesize that these concentrations could be sufficient for them to function as cell signaling molecules or as mediators of biological boron uptake. In addition, binding of the tetrahedral boron to these siderophores results in a conformation that is different from either the free siderophore or its iron complex and would thus allow a distinction to be made between its iron uptake and any putative cell signaling roles.  相似文献   

18.
The bleomycin (BLM) group antitumor antibiotics are glycopeptide-derived natural products shown to cause sequence selective lesions in DNA. Prior studies have indicated that the linker region, composed of the methylvalerate and threonine residues, may be responsible for a conformational bend in the agent required for efficient DNA cleavage. We have synthesized a number of conformationally constrained methylvalerate analogues and incorporated them into deglycobleomycin A(5) congeners using our recently reported procedure for the solid phase construction of (deglyco)bleomycin and its analogues. These analogues were designed to probe the effects of conformational constraint of the native valerate moiety. Initial experiments indicated that the constrained molecules, none of which mimic the conformation proposed for the natural valerate linker, possessed DNA cleavage activity, albeit with potencies less than that of (deglyco)BLM and lacking sequence selectivity. Further experiments demonstrated that these analogues failed to produce alkali-labile lesions in DNA or sequence selective oxidative damage in RNA. However, two of the conformationally constrained deglycoBLM analogues were shown to mediate RNA cleavage in the absence of added Fe(2+). The ability of the analogues to mediate the oxygenation of small molecules was also assayed, and it was shown that they were as competent in the transfer of oxygen to low molecular weight substrates as the parent compound.  相似文献   

19.
The synthesis of squaric acid N-hydroxylamide esters 5 and amides 6 from dimethyl squarate 2a is described. These derivatives are analogues of the naturally occurring iron(III) chelator hydroxamic acid. On the basis of a comparative reactivity study, a concerted retro-Cope mechanism for the formation of the N-hydroxylamide esters 5 by reaction of dimethyl squarate with hydroxylamines is proposed. A preliminary iron(III) binding study of these hydroxamic acid analogues is presented, demonstrating binding of iron(III) to amides 6 in aqueous solutions, while the esters 5 did not show any sign of metal ion binding. 13C NMR spectroscopic data (chemical shift and spin-lattice relaxation time determination) of these and related derivatives delineate the resonance structures predominant in these molecules. The resonance structures of the derivatives rationalize their spectroscopic data, chemical reactivity, and iron(III) binding properties. Single-crystal X-ray structure analyses of squaric acid N-hydroxylamide ester 5b and squaric acid N-hydroxylamide amide 6c confirm their connectivity and provide structural evidence supporting the spectroscopically derived conclusions. The squaric acid N-hydroxylamides are potentially useful in the construction of chemosensors for iron(III).  相似文献   

20.
Phosphoanhydrides (P‐anhydrides) are ubiquitously occurring modifications in nature. Nucleotides and their conjugates, for example, are among the most important building blocks and signaling molecules in cell biology. To study and manipulate their biological functions, a diverse range of analogues have been developed. Phosphate‐modified analogues have been successfully applied to study proteins that depend on these abundant cellular building blocks, but very often both the preparation and purification of these molecules are challenging. This study discloses a general access to P‐anhydrides, including different nucleotide probes, that greatly facilitates their preparation and isolation. The convenient and scalable synthesis of, for example, 18O labeled nucleoside triphosphates holds promise for future applications in phosphoproteomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号