首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D.L. Miller 《Ultrasonics》1981,19(5):217-224
During low-power exposures, biophysical effects of ultrasonic cavitation are induced primarily by resonant bubbles, and there is a need for a new method of detecting these small bubbles. Bubble pulsation theory indicates that second-harmonic emissions emanate from resonant bubbles even at low amplitudes. A device was constructed to detect resonant bubbles passing through it in a flowing liquid by monitoring second-harmonic responses to a low amplitude, 1.64 MHz ultrasonic field. During testing, 4.2 μm diameter resonant bubbles produced signals 40 times larger than 500 μm diameter bubbles, and this technique was much better than a first-harmonic scattering technique for counting resonant bubbles.  相似文献   

2.
3.
Ultrasonic impregnation is thought to be an effective way of permeation of liquid into material through the material-surface reforming with the attack by an ultrasonic cavitation jet or by the shock wave emitted from a collapsing bubble, or through dynamic transformation of material like a sponge. The action of a cavitation bubble can also provide penetration of liquid into the interior of the material. This paper investigates whether there is a correlation between the intensity of sonoluminescence (SL) measured at different positions and the increment in the mass of the wood material (cedar) after sonication with immersion into water in order to clarify the role of cavitation bubbles for ultrasonic impregnation. It was found that a high mass change was obtained for the material located at the position for high (the maximum) SL intensity. The number density of ultrasonic cavitation bubbles that are able to collapse leading to the emission of SL is correlated with the degree of ultrasonic impregnation.  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(4):1496-1503
Changes in the cavitation intensity of gases dissolved in water, including H2, N2, and Ar, have been established in studies of acoustic bubble growth rates under ultrasonic fields. Variations in the acoustic properties of dissolved gases in water affect the cavitation intensity at a high frequency (0.83 MHz) due to changes in the rectified diffusion and bubble coalescence rate. It has been proposed that acoustic bubble growth rates rapidly increase when water contains a gas, such as hydrogen faster single bubble growth due to rectified diffusion, and a higher rate of coalescence under Bjerknes forces. The change of acoustic bubble growth rate in rectified diffusion has an effect on the damping constant and diffusivity of gas at the acoustic bubble and liquid interface. It has been suggested that the coalescence reaction of bubbles under Bjerknes forces is a reaction determined by the compressibility and density of dissolved gas in water associated with sound velocity and density in acoustic bubbles. High acoustic bubble growth rates also contribute to enhanced cavitation effects in terms of dissolved gas in water. On the other hand, when Ar gas dissolves into water under ultrasound field, cavitation behavior was reduced remarkably due to its lower acoustic bubble growth rate. It is shown that change of cavitation intensity in various dissolved gases were verified through cleaning experiments in the single type of cleaning tool such as particle removal and pattern damage based on numerically calculated acoustic bubble growth rates.  相似文献   

5.
Lithotripter shock waves (SWs) generated in non-degassed water at 0.5 and 2 Hz pulse repetition frequency (PRF) were characterized using a fiber-optic hydrophone. High-speed imaging captured the inertial growth-collapse-rebound cycle of cavitation bubbles, and continuous recording with a 60 fps camcorder was used to track bubble proliferation over successive SWs. Microbubbles that seeded the generation of bubble clouds formed by the breakup of cavitation jets and by bubble collapse following rebound. Microbubbles that persisted long enough served as cavitation nuclei for subsequent SWs, as such bubble clouds were enhanced at fast PRF. Visual tracking suggests that bubble clouds can originate from single bubbles.  相似文献   

6.
A computer study of rectified diffusion was made over the biomedical frequency range (1-10 MHz). Solutions of the Gilmore-Akulichev [E. Cramer, in Cavitation and Inhomogeneities in Underwater Acoustics, edited by W. Lauterborn (Springer, New York, 1980), pp. 54-63] formulation for bubble dynamics were combined with the Eller-Flynn [A. Eller and H.G. Flynn, J. Acoust. Soc. Am. 37, 493-503 (1965)] approach to rectified diffusion in order to calculate thresholds and growth rates. It is found that: (1) for frequencies above 1 MHz, the widely held view that small bubbles grow by rectified diffusion to "resonance size" and then collapse violently is true only for narrow ranges of bubbles; (2) growth rates in the low megahertz range can be quite high for medically relevant pressures, approximately 20 micron/s at 1 MHz, 1 bar; (3) thresholds derived analytically are accurate for low frequencies over a wide range of bubble radii but, for high frequencies, only near the fundamental resonance radius; and (4) thresholds are quite sensitive to dissolved gas concentration at low frequencies.  相似文献   

7.
Thresholds for cavitation produced in water by pulsed ultrasound   总被引:1,自引:0,他引:1  
The threshold for transient cavitation produced in water by pulsed ultrasound was measured as a function of pulse duration and pulse repetition frequency at both 0.98 and 2.30 MHz. The cavitation events were detected with a passive acoustic technique which relies upon the scattering of the irradiation field by the bubble clouds associated with the events. The results indicate that the threshold is independent of pulse duration and acoustic frequency for pulses longer than approximately 10 acoustic cycles. The threshold increases for shorter pulses. The cavitation events are likely to be associated with bubble clouds rather than single bubbles.  相似文献   

8.
Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 μs. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W.  相似文献   

9.
Particle displacements can be much greater near bubbles than they would be in a homogeneous liquid or tissue when exposed to an acoustic wave. In a plane wave, shear and bulk strains are of the same order of magnitude. In contrast, for a bubble oscillating close to its resonance frequency, the shear strain in the medium near the bubble is roughly four orders of magnitude greater than the bulk strain. This can lead to shear strains of a few percent even with acoustic excitation pressures far below the pressure thresholds required to cause inertial cavitation. High shear strains near oscillating bubbles could potentially be the cause of bioeffects. After acoustic exposures at audio frequencies, hemorrhages in tissues as diverse as lung, liver, and kidney have been observed at shear strains on the order of 1%.  相似文献   

10.
Ultrasonic emulsification (USE) assisted by cavitation is an effective method to produce emulsion droplets. However, the role of gas bubbles in the USE process still remains unclear. Hence, in the present paper, high-speed camera observations of bubble evolution and emulsion droplets formation in oil and water were used to capture in real-time the emulsification process, while experiments with different gas concentrations were carried out to investigate the effect of gas bubbles on droplet size. The results show that at the interface of oil and water, gas bubbles with a radius larger than the resonance radius collapse and sink into the water phase, inducing (oil–water) blended liquid jets across bubbles to generate oil-in-water-in-oil (O/W/O) and water-in-oil (W/O) droplets in the oil phase and oil-in-water (O/W) droplets in the water phase, respectively. Gas bubbles with a radius smaller than the resonance radius at the interface always move towards the oil phase, accompanied with the generation of water droplets in the oil phase. In the oil phase, gas bubbles, which can attract bubbles nearby the interface, migrate to the interface of oil and water due to acoustic streaming, and generate numerous droplets. As for the gas bubbles in the water phase, those can break neighboring droplets into numerous finer ones during bubble oscillation. With the increase in gas content, more bubbles undergo chaotic oscillation, leading to smaller and more stable emulsion droplets, which explains the beneficial role of gas bubbles in USE. Violently oscillating microbubbles are, therefore, found to be the governing cavitation regime for emulsification process. These results provide new insights to the mechanisms of gas bubbles in oil–water emulsions, which may be useful towards the optimization of USE process in industry.  相似文献   

11.
Cavitation bubble clouds in the focal region of HIFU play important roles in therapeutic applications of HIFU. Temporal evolution and spatial distribution of cavitation bubble clouds generated in the focal region of a 1.2 MHz single element concave HIFU transducer in water are investigated by high-speed photography. It is found that during the initial 600 micro s insonation cavitation bubble clouds organize to the "screw-like structure" or "cap-like structure". The screw-like structure is characterized by a nearly fixed tip at the geometrical focus of the HIFU transducer, and the cap-like structure is marked by a dent formed in the direction of ultrasound transmission. After 600 micro s, another two structures are recorded - "streamer structure" and "cluster structure". The streamer structure is also featured by a nearly fixed bottom position at the focus, while the cluster structure is distinguished by agglomerations of bubbles around the focus.  相似文献   

12.
Acoustic noise spectra were studied for the first time in overheated water using sonohydrothermal reactor operating at 20 kHz ultrasound in the temperature range from 25 to 200 °C at the autogenic pressure of 1–14 bar. The obtained results highlighted a dominating role of stable cavitation during ultrasonic treatment of hot water. Heating of sonicated water results in the formation of large number of nonlinearly oscillating bubbles synchronous with the driving frequency. At 200 °C, the acoustic spectra also display strong subharmonic and multiple ultraharmonic bands. Moreover, cavitation bubbles formed at 200 °C exhibit chaotic and random motions. It has been shown that the addition of TiO2 nanoparticles to hydrothermal water heated at 200 °C allows to eliminate subharmonic/ultraharmonic bands and stochastic oscillations as well. This effect was assigned to Pickering-like bubble stabilization due to the particle accumulation at the bubble surface.  相似文献   

13.
Observation of a cavitation cloud was performed using an off-axis laser holography system. The cavitation cloud contains an inverse U-shaped vortex cavitation surrounded by many small cavitation bubbles. The density of bubbles with radius larger than 35 μm is on the order of 103 bubbles/cm3. The bubble number distribution was determined from the observation and by counting individual bubbles in reconstructed holographic images of the cavitation cloud.  相似文献   

14.
蒋丹  Li Song-Jing  包钢 《物理学报》2008,57(8):5072-5080
流动液体中的压力变化会引起气泡和气穴的产生及破灭,而气泡和气穴又会对液体的流动产生影响及压力变化.为了合理预测流控系统瞬态压力脉动过程中气泡和气穴的体积变化及其对脉动传播过程的影响,基于气泡溶解和析出的物理过程,建立了压力脉动过程中气泡和气穴产生及破灭的数学模型,并提出采用遗传算法对气泡模型中初始气泡体积、气体溶解和析出时间常数进行参数辨识.以一段液压油管路为研究对象,对管路中伴随气泡和气穴的瞬态压力脉动过程进行仿真及实验研究.利用仿真及实验结果,验证了采用遗传算法对气泡模型进行参数辨识的可行性. 关键词: 气泡 气穴 压力脉动 参数辨识  相似文献   

15.
An acoustic radiation force counterbalanced appliance was employed to map the cavitation distribution in water. The appliance was made up of a focused ultrasound transducer and an aluminum alloy reflector with the exactly same shape. They were centrosymmetry around the focus of the source transducer. Spatial–temporal dynamics of cavitation bubble clouds in the 1.2 MHz ultrasonic field within this appliance were observed in water. And they were mapped by sonochemiluminescence (SCL) recordings and high-speed photography. There were significant differences in spatial distribution and temporal evolution between normal group and counterbalanced group. The reflector could avoid bubble directional displacement induced by acoustic radiation force under certain electric power (⩽50 W). As a result, the SCL intensity in the pre-focal region was larger than that of normal group. In event of high electric power (⩾70 W), most of the bubbles were moving in acoustic streaming. When electric power decreased, bubbles kept stable and showed stripe structure in SCL images. Both stationary bubbles and moving bubbles have been captured, and exhibited analytical potential with respect to bubbles in therapeutic ultrasound.  相似文献   

16.
Various industrial processes such as sonochemical processing and ultrasonic cleaning strongly rely on the phenomenon of acoustic cavitation. As the occurrence of acoustic cavitation is incorporating a multitude of interdependent effects, the amount of cavitation activity in a vessel is strongly depending on the ultrasonic process conditions. It is therefore crucial to quantify cavitation activity as a function of the process parameters. At 1 MHz, the active cavitation bubbles are so small that it is becoming difficult to observe them in a direct way. Hence, another metrology based on secondary effects of acoustic cavitation is more suitable to study cavitation activity. In this paper we present a detailed analysis of acoustic cavitation phenomena at 1 MHz ultrasound by means of time-resolved measurements of sonoluminescence, cavitation noise, and synchronized high-speed stroboscopic Schlieren imaging. It is shown that a correlation exists between sonoluminescence, and the ultraharmonic and broadband signals extracted from the cavitation noise spectra. The signals can be utilized to characterize different regimes of cavitation activity at different acoustic power densities. When cavitation activity sets on, the aforementioned signals correlate to fluctuations in the Schlieren contrast as well as the number of nucleated bubbles extracted from the Schlieren Images. This additionally proves that signals extracted from cavitation noise spectra truly represent a measure for cavitation activity. The cyclic behavior of cavitation activity is investigated and related to the evolution of the bubble populations in the ultrasonic tank. It is shown that cavitation activity is strongly linked to the occurrence of fast-moving bubbles. The origin of this “bubble streamers” is investigated and their role in the initialization and propagation of cavitation activity throughout the sonicated liquid is discussed. Finally, it is shown that bubble activity can be stabilized and enhanced by the use of pulsed ultrasound by conserving and recycling active bubbles between subsequent pulsing cycles.  相似文献   

17.
The interest in application of ultrasonic cavitation for cleaning and surface treatment processes has increased greatly in the last decades. However, not much is known about the behavior of cavitation bubbles inside the microstructural features of the solid substrates. Here we report on an experimental study on dynamics of acoustically driven (38.5 kHz) cavitation bubbles inside the blind and through holes of PMMA plates by using high-speed imaging. Various diameters of blind (150, 200, 250 and 1000 µm) and through holes (200 and 1000 µm) were investigated. Gas bubbles are usually trapped in the holes during substrate immersion in the liquid thus preventing their complete wetting. We demonstrate that trapped gas can be successfully removed from the holes under ultrasound agitation. Besides the primary Bjerknes force and acoustic streaming, the shape oscillations of the trapped gas bubble seem to be a driving force for bubble removal out of the holes. We further discuss the bubble dynamics inside microholes for water and Cu2+ salt solution. It is found that the hole diameter and partly the type of liquid media influences the number, size and dynamics of the cavitation bubbles. The experiments also showed that a large amount of the liquid volume inside the holes can be displaced within one acoustic cycle by the expansion of the cavitation bubbles. This confirmed that ultrasound is a very effective tool to intensify liquid exchange processes, and it might significantly improve micro mixing in small structures. The investigation of the effect of ultrasound power on the bubble density distribution revealed the possibility to control the cavitation bubble distribution inside the microholes. At a high ultrasound power (31.5 W) we observed the highest bubble density at the hole entrances, while reducing the ultrasound power by a factor of ten shifted the bubble locations to the inner end of the blind holes or to the middle of the through holes.  相似文献   

18.
Use of sweeping mode with a 3.6 MHz High Intensity Focused Ultrasound (HIFU) allows cavitation activity to be controlled. This is especially true in the pre-focal zone where the high concentration of bubbles acts as an acoustic reflector and quenches cavitation above this area. Previous studies attributed the enhancement of cavitation activity under negative sweep to the activation of more bubble nuclei, requiring deeper investigations. After mapping this activity with SCL measurements, cavitation noise spectra were recorded. The behavior of the acoustic broadband noise follows the sonochemical one i.e., showing the same attenuation (positive scan) or intensification (negative scan) of cavitational activity. In 1 M NaCl 3.7 mM 2-propanol solution saturated by a mixture of Ar-15.5%O2-2.2%N2, intensities of SL spectra are high enough to allow detection of several molecular emissions (OH, NH, C2, Na) under negative frequency sweeps. This is the first report of molecular emissions at such high frequency. Their intensities are low, and they are very broad, following the trend obtained at fixed frequency up to 1 MHz. Under optimized conditions, CN emission chosen as a spectroscopic probe is strong enough to be simulated, which is reported for the first time at such high frequency. The resulting characteristics of the plasma do not show any spectral difference, so bubble nature is the same in the pre-and post-focal zone under different sweeping parameters. Consequently, SL and SCL intensification was not related to a change in plasma nature inside the bubbles but to the number of cavitation bubbles.  相似文献   

19.
The persistence of acoustic cavitation in a pulsed wave ultrasound regime depends upon the ability of cavitation nuclei, i.e., bubbles, to survive the off time between pulses. Due to the dependence of bubble dissolution on surface tension, surface-active agents may affect the stability of bubbles against dissolution. In this study, measurements of bubble dissolution rates in solutions of the surface-active polymer poly(propyl acrylic acid) (PPAA) were conducted to test this premise. The surface activity of PPAA varies with solution pH and concentration of dissolved polymer molecules. The surface tension of PPAA solutions (55-72 dynes/cm) that associated with the polymer surface activity was measured using the Wilhelmy plate technique. Samples of these polymer solutions then were exposed to 1.1 MHz high intensity focused ultrasound, and the dissolution of bubbles created by inertial cavitation was monitored using an active cavitation detection scheme. Analysis of the pulse echo data demonstrated that bubble dissolution time was inversely proportional to the surface tension of the solution. Finally, comparison of the experimental results with dissolution times computed from the Epstein-Plesset equation suggests that the radii of residual bubbles from inertial cavitation increase as the surface tension decreases.  相似文献   

20.
球状泡群内气泡的耦合振动   总被引:1,自引:0,他引:1       下载免费PDF全文
王成会  莫润阳  胡静  陈时 《物理学报》2015,64(23):234301-234301
振动气泡形成辐射场影响其他气泡的运动, 故多气泡体系中气泡处于耦合振动状态. 本文在气泡群振动模型的基础上, 考虑气泡间耦合振动的影响, 得到了均匀球状泡群内振动气泡的动力学方程, 以此为基础分析了气泡的非线性声响应特征. 气泡间的耦合振动增加了系统对每个气泡的约束, 降低了气泡的自然共振频率, 增强了气泡的非线性声响应. 随着气泡数密度的增加, 振动气泡受到的抑制增强; 增加液体静压力同样可抑制泡群内气泡的振动, 且存在静压力敏感区(1–2 atm, 1 atm=1.01325×105 Pa); 驱动声波对气泡振动影响很大, 随着声波频率的增加, 能够形成空化影响的气泡尺度范围变窄. 在同样的声条件、泡群尺寸以及气泡内外环境下, 初始半径小于5 μm 的气泡具有较强的声响应. 气泡耦合振动会削弱单个气泡的空化影响, 但可延长多气泡系统空化泡崩溃发生的时间间隔和增大作用范围, 整体空化效应增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号