首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acoustic cavitation has been an active area of research for at least 30 years and interest in the subject shows no sign of diminishing. Cavitation may occur whenever high intensity ultrasound is applied to liquids, for example in such important applications as sonar, industrial processing and bio-medical research. Future issues will carry a series of articles reviewing the physics and technology of acoustic cavitation, each contributed by a well-known specialist. The present introductory article is a preface to the series, covering background history, explaining the scope of the subject and defining terms in common use. Also included is a list of the major sources of reference presently available, in the form of books, reviews and collections of papers.  相似文献   

2.
R.E. Apfel 《Ultrasonics》1984,22(4):167-173
This article presents a selective review of the subject of acoustic cavitation inception. Topics covered include cavitation threshold measurements, the role of dirt or pre-existing bubble nuclei in cavitation inception, radiation-induced acoustic cavitation, and a discussion of some unsolved problems such as cavitation thresholds in liquid helium and the effects of electric fields on thresholds.  相似文献   

3.
A. Prosperetti 《Ultrasonics》1984,22(3):115-124
Large-amplitude radial oscillations of gas bubbles are briefly illustrated with the aid of numerical examples. The origin and possible effects of pressure-radiation forces are considered and an estimate of the coalescence time under their action is given. Non-spherical oscillations, the related problem of the fragmentation of oscillating bubbles by instability of the spherical shape, and sound propagation in bubbly liquids conclude the review.  相似文献   

4.
This paper presents a mainly theoretical review of the physical aspects of the behaviour of bubbles in sound fields. Firstly, an equation for the radial motion, including the effects of liquid compressibility, is critically presented. The equilibrium radius and its stability are then considered, followed by a presentation of results concerning the small-amplitude radial oscillations of gas and vapour bubbles.  相似文献   

5.
Bubble dynamics has been recognized as being responsible for many effects in ultrasonic fields, for example cleaning and destruction of surfaces, and emulsification. To improve the performance of ultrasonic devices which make use of these effects some knowledge of the dynamics of cavitation bubbles is needed. One of the main means of studying bubble dynamics is high speed photography in conjunction with some suitable bubble production mechanism to get rid of the statistical appearance of bubbles encountered in ultrasonic cavitation. Results of jet and vortex ring formation obtained mainly with spark-and laser-produced bubbles are reported and demonstrated in a series of frames.  相似文献   

6.
Ultrasonic cavitation at frequencies of 0.514, 0.866, 1.03 and 1.61 MHz in water flowing through tubes was observed by counting bubbles downstream with a resonant bubble detector (RBD) operated at 0.89 or 1.7 MHz. In a 21 mm diameter, thin-walled tube, cavitation thresholds in tap water flowing at 5.3 cm s?1 ranged from 2.0 – 2.5 bar at 0.514 MHz to 3 – 4 bar at 1.61 MHz. When high speed injections were employed to trigger the ultrasonic cavitation with hydrodynamically-generated bubbles, the thresholds were reduced to about 2 bar and bubble production was enhanced for 1.03 and 1.61 MHz exposures. Ultrasonic radiation forces on the bubbles and bubble coalescence appeared to cause, under some conditions, a reduction in bubble counts during subthreshold exposures when bubbles were injected into the flow. The RBD method is a useful tool for detecting and semi-quantitatively observing cavitation in a flow-through exposure system.  相似文献   

7.
M.A. Margulis 《Ultrasonics》1985,23(4):157-169
Contemporary ideas on the nature of cavitation are reviewed in this paper. The general theories of sonoluminescence and sonochemical reactions, the origin, stability and splitting of cavitation bubbles, the dynamics of cavitation field evolution, the peculiarities of cavitation effects at low intensity and low-frequency acoustic oscillations, the sonoluminescence quenching effect and some questions on the energetics of cavitation fields are discussed. The electrical theory of the splitting of cavitation bubbles may, as shown in the paper, become an alternative to the thermal theories of cavitation in the future.  相似文献   

8.
A model system consisting of a thin layer of vacuum-deposited metallic aluminium on a glass microscope slide was developed to demonstrate the effectiveness of cavitational activity (occurring within the cooling water supply of a dental ultrasonic descaler operating at 25 kHz) in the removal of particulate matter from solid surfaces. The pattern of particulate matter removal using this model system demonstrated both the mechanism of bubble activity and the erosive nature of microbubbles.Non-resonant bubbles were formed by surface wave activity and adhered to the surface of the slide. There was some removal of the aluminium metal at the periphery of the bubble (probably by a microstreaming mechanism) giving a ‘ghost’ outline. The majority of aluminium removal was caused by numerous microbubbles of non-resonant sizes (typically 1 to 2 μm diameter) formed by surface wave induced fragmentation of the parent bubble.The damaging and erosive effects of transient cavitational activity appear to be the result of sub-resonant sized microbubble formation from larger parent bubbles.  相似文献   

9.
D. L. Miller 《Ultrasonics》1984,22(6):259-260
A small body of gas which is stabilized against dissolution in a liquid by a supportive structure may oscillate in response to an ultrasonic field and this form of cavitation is termed gas body activation. Linear theory describes the response of gas-filled intercellular channels in plant tissue and of gas-filled micropores in thin sheets of plastic. Calculations from this theory yield good agreement with indirect observations of resonance frequencies and rough agreement with direct measures of aggregate response (transmission and reflection coefficients). Studies of gas body activation in biological systems should allow quantitative analysis of cavitation bioeffects for relatively low-intensity ultrasound applications.  相似文献   

10.
Dynamics and measurement of cavitation bubble   总被引:1,自引:1,他引:0  
Based on the introduction of international progress, our investigations on acoustic cavitation have been reported. Firstly we considered the cavity’s dynamics under the drive of the asymmetrical acoustic pressure. An aspheric dynamical model was proposed and a new stable and aspheric solution was found in numerical simulation of the theoretical framework of the aspheric model. Then, a dual Mie-scattering technique was developed to measure the cavity’s aspheric pulsation. A significant asynchronous pulsation signal between two Mie-scattering channels was caught in the case of large cavity driven by low acoustic pressure. As a direct deduction, we observed an evidence of cavity’s aspheric pulsation. Furthermore, we studied the dependency of the asynchronous pulsation signal on the various parameters, such as the amplitude and frequency of the driving acoustic pressure, and the surface tension, viscosity and gas concentration of the liquid. Finally, we introduced a new numeric imaging technique to measure the shapes of the periodic pulsation cavities. The time-resolution was in the order of 20 ns, one order of magnitude lower than that in the previous work, say, 200 ns.  相似文献   

11.
Comments on the evolving field of sonochemistry by a cavitation physicist   总被引:1,自引:0,他引:1  
Sonochemistry is an evolving field that has shown recent rapid growth and increasing interest. Although this field concentrates on chemistry and uses acoustics principally as a tool, the basic mechanism that gives rise to sonochemistry — acoustic cavitation — is often ignored or given little attention. This paper addresses some of the relevant aspects of cavitation and physical acoustics that apply to sonochemistry.  相似文献   

12.
P. Kruus 《Ultrasonics》1983,21(5):201-204
Polymerization due to ultrasonically induced cavitation is reported for a number of compounds: bromobenzene, styrene, isoprene, and methyl methacrylate. The molecular weight of the polymethylmethacrylate produced through ultrasound is considerably lower than that due to normal aging. The bromobenzene and styrene products are dark friable solids. The isoprene product has an ultra-violet absorption suggesting a conjugated system of about ten carbon-carbon bonds in length.  相似文献   

13.
D L Miller 《Ultrasonics》1984,22(6):261-269
An ultrasonic instrument for the accurate measurement of bolt stress is described. The instrument, which is based on the pseudo-continuous-wave technique, uses carrier phase detection to track the frequency of the mechanical resonance of the bolt. The basic operation of the instrument and the experimental results obtained are discussed.  相似文献   

14.
声场中水力空化泡的动力学特性   总被引:4,自引:0,他引:4       下载免费PDF全文
沈壮志  林书玉 《物理学报》2011,60(8):84302-084302
以水为工作介质,考虑了液体黏性、表面张力、可压缩性及湍流作用等情况,对文丘里管反应器中空化泡在声场作用下的动力学行为特性进行了数值研究.分析了超声波频率、声压及喉径比对空化泡运动特性以及空化泡崩溃时所形成泡温以及压力脉冲的影响.结果表明,超声将水力空化泡运动调制成稳态空化,有利于增强空化效果. 关键词: 超声波 水力空化 湍流 气泡动力学  相似文献   

15.
Stable arrays of cylindrical bubbles with diameters 3 and 4 μm were produced by trapping air in the pores of hydrophobic Nuclepore filters. These bubble arrays were irradiated by beams of cw and pulsed ultrasound at carrier frequencies near the resonance frequencies of the trapped bubbles. By examining the frequency spectrum of the field scattered by the arrays it was found that the bubbles may oscillate as non-linear stable cavities of long duration. Using short pulses, the bubbles remain stable up to excitation pressure amplitudes of several bars. Mechanisms for the eventual growth and decay of the bubbles are discussed in light of the observations.  相似文献   

16.
超声空化与超声医学   总被引:13,自引:0,他引:13       下载免费PDF全文
冯若  李化茂 《应用声学》2000,19(1):35-38
随着超声技术应用广泛而迅速的发展,整整一个世纪来,超声空化成了经久不衰的研究课题,特别近10年来,超声空化成了多种学科的基础研究热点。本扼要地介绍了起声空化的最新研究进展,以及超声空化与超声医学发展的密切关系。  相似文献   

17.
Bubble population phenomena in acoustic cavitation   总被引:11,自引:0,他引:11  
Theoretical treatments of the dynamics of a single bubble in a pressure field have been undertaken for many decades. Although there is still scope for progress, there now exists a solid theoretical basis for the dynamics of a single bubble. This has enabled useful classifications to be established, including the distinction between stable cavitation (where a bubble pulsates for many cycles) and transient cavitation (where the bubble grows extensively over time-scales of the order of the acoustic cycle, and then undergoes an energetic collapse and subsequent rebound and then, potentially, either fragmentation, decaying oscillation or a repeat performance). Departures from sphericity, such as shape and surface oscillations and jetting, have also been characterized. However, in most practical systems involving high-energy cavitation (such as those involving sonochemical, biological and erosive effects), the bubbles do not behave as the isolated entities modelled by this single-bubble theory: the cavitational effect may be dominated by the characteristics of the entire bubble population, which may influence, and be influenced by, the sound field.

The well established concepts that have resulted from the single-bubble theory must be reinterpreted in teh light of the bubble population, an appreciation of population mechanisms being necessary to apply our understanding of single-bubble theory to many practical applications of ‘power’ ultrasound. Even at a most basic level these single-bubble theories describe the response of the bubble to the local sound field at the position of the bubble, and that pressure field will be influenced by the way sound is scattered by neighbouring bubbles. The influence of the bubble population will often go further, a non-uniform sound field creating an inhomogeneous bubble distribution. Such a distribution can scatter, channel and focus ultrasonic beams, can acoustically shield regions of the sample, and elsewhere localize the cavitational activity to discrete ‘hot spots’. As a result, portions of the sample may undergo intense sonochemical activity, degassing, erosion, etc., whilst other areas remain relatively unaffected. Techniques exist to control such situations where they are desirable, and to eliminate this localization where a more uniform treatment of the sample is desired.  相似文献   


18.
This paper reports on theoretical research into the dynamics, acoustic noise and noise spectrum of a single cavitation bubble affected by non-gradiental acoustic fields. It is shown that all the characteristic features of experimental acoustic cavitation spectra occur in the spectrum of a single bubble.  相似文献   

19.
杨日福  洪旭烨 《应用声学》2018,37(4):455-461
本文基于流体动力学控制方程和VOF模型,在FLUENT 14.5软件环境下对超声空化泡进行数值模拟。首先研究了超声空化泡一个周期内的形态变化,并且利用空化泡形态变化的最大面积、最小面积、膨胀时间、收缩时间等数值结果分析超声参数对空化效果的影响。同时探究了双频超声作用下空化泡运动的变化,计算结果表明:在其他条件相同的情况下,在1~5MPa范围内,超声声压幅值为3MPa时空化效果最好;当超声频率大于20kHz时,空化效果随着超声频率的增大而降低。对于频率相同的双频超声,较声压幅值为其两倍的单频超声有更好的空化效果;对于频率不同的双频超声,空化效果受到频率差的影响。  相似文献   

20.
双泡超声空化计算分析   总被引:4,自引:0,他引:4       下载免费PDF全文
卢义刚  吴雄慧 《物理学报》2011,60(4):46202-046202
将由速度势叠加原理得到的双泡超声空化动力学微分方程归一化,通过matlab语言编程计算,分析了水中空化泡的线度、双泡间距、声压幅值、声波频率等因素对空化过程的影响. 在双泡超声空化动力学微分方程中引入双频超声,探讨了双泡双频超声问题. 研究表明泡的线度是决定空化特性的主要因素,声压幅值对空化特性的影响最大,其次是超声波的频率;双泡间的相互作用影响空化特性,这种影响随双泡间距的增大而减弱;双频超声对双泡空化特性的影响有限,这种影响在两超声分量的声压幅值相等时较强. 关键词: 超声空化 双泡 双频超声  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号