首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
2.
In the canonical ensemble any singularity of a thermodynamic function at a temperatureT c is smeared over a temperature range of orderT T /N. Therefore it is rather difficult to distinguish between a discontinuous and a continuous phase transition on the basis of numerical data obtained for finite systems in the canonical ensemble. It is demonstrated for four model systems that this problem cannot be circumvented by considering higher cumulants of the energy distribution or cumulant ratios. On the other hand, the distinction between first and a second order phase transition is rather direct if based on the microcanonical density of states which is readily obtainable in the dynamical ensemble.  相似文献   

3.
The classical isodesmic one-dimensional model for equilibrium polymerization is generalized in order to describe self-assembly in systems forming fibrils. The model was applied to peptide solutions forming -sheet tapes which can further aggregate into stacks of various thickness: double tapes and fibrils (several double tapes stacked together). We found that in some cases the model yields several step-like transitions as the concentration increases: first from monomers to single or double tapes, and then to fibrils. The abruptness of the first transition is controlled by the free energy penalty for transformation of a peptide from random coil to a straight -strand conformation (the latter is characteristic for tapes). If both single and double tapes are allowed, the length of the aggregates after the first transition can be very large with high scission energies. For very low energies of attraction between double tapes, the transition from double tapes to fibrils happens separately (above the first transition), and it is even more abrupt and produces extremely long fibrils. The theoretical findings are used to extract the characteristic molecular parameters for the self-assembly of the de novo peptide DN1 forming polymeric -sheets in water. Received 28 June 1999  相似文献   

4.
Free energy of semiflexible polymers and structure of interfaces   总被引:1,自引:0,他引:1  
The free energy of semiflexible polymers is calculated as a functional of the compositional scalar order parameter and the orientational order parameter of second-rank tensor Sij on the basis of a microscopic model of wormlike chains with variable segment lengths. We use a density functional theory and a gradient expansion to evaluate the entropic part of the free energy, which is given in a power series of .The interaction term of the free energy is derived with a random phase approximation. For the rigid rod limit, the nematic-isotropic transition point is given by , N and w being the degree of polymerization and the anisotropic interaction parameter, respectively, and the degree of ordering at the transition point is 0.33448. We also find that the contour length of polymer chains becomes larger in a nematic phase than in an isotropic phase. Interface profiles are obtained numerically for some typical cases. In the neighborhood of isotropic-isotropic interfaces, polymer chains tend to align parallel to the interface on the polymer-rich side and perpendicular on the poor side. When an isotropic region and a nematic region coexist, orientational order parallel to the interface is preferred in the nematic region. Received: 28 May 1998 / Revised: 12 August 1998 / Accepted: 8 September 1998  相似文献   

5.
We extend the random anisotropy nematic spin model to study nematic-isotropic transitions in porous media. A complete phase diagram is obtained. In the limit of relative low randomness the existence of a triple point is predicted. For relatively large randomness we have found a depression in temperature at the transition, together with a first order transition which ends at a tricritical point, beyond which the transition becomes continuous. We use this model to investigate the motion of the nematic-isotropic interface. We assume the system to be isothermal and initially quenched into the metastable régime of the isotropic phase. Using an appropriate form of the free energy density we obtain the domain wall solutions of the time-dependent Ginzburg-Landau equation. We find that including a random field leads to smaller velocity of the interface and to larger interface width. Received 12 November 1998 and Received in final form 15 March 1999  相似文献   

6.
D. Jayasri  V.S.S. Sastry 《Physica A》2009,388(4):385-391
We investigate nematic-isotropic transition in liquid crystal elastomers employing a variant of Wang-Landau sampling. This technique facilitates calculation of the density of states from which other thermodynamic properties can be obtained. We consider a lattice model of a liquid crystal elastomer and a Hamiltonian which accounts for interactions among liquid crystalline units and interaction of local nematics with global strain. We investigate the effect of varying the strength of coupling between nematic and orientational degrees of freedom. When the local director is coupled strongly to the global strain, the transition is strongly first order. When the strength of the coupling decreases the transition becomes weakly first order. The transition temperature decreases when the coupling becomes weaker. We also report for the first time results on variation of free energy as a function of average energy at different temperatures and coupling constants.  相似文献   

7.
We have theoretically investigated chevron formation in smectic C materials and the transformation of this chevron structure to a tilted layer structure as the cell is sheared. We find a series of transition temperatures at which the behaviour of the cell critically changes. As the cell is cooled from the smectic A phase past the first critical temperature there is a second order transition which forms two tilted layer states with lower energy than the smectic A bookshelf structure. Although these low energy tilted structures exist the bookshelf structure is the stable state for zero shear. However, upon further cooling this bookshelf structure becomes unstable to the formation of a chevron state. Now when the cell is sheared the chevron structure smoothly transforms into the tilted layer structure. As each further critical temperature is passed an additional multiple chevron solution is formed which although a high energy, unstable state may be observed transiently. For sufficiently low temperatures the transition from chevron to tilted layer becomes first order. This first order transition occurs as the chevron interface merges with the surface alignment region to form the tilted layer structure. Received 28 December 1998 and Received in final form 8 April 1999  相似文献   

8.
The explicit form of the Griffiths singularity in the random ferromagnetic Ising model in external magnetic field is derived. In terms of the continuous random temperature Ginzburg-Landau Hamiltonian it is shown that in the paramagnetic phase away from the critical point the free energy as the function of the external magnetic field h in the limit h → 0 has the essential singularity of the form exp [−(const)/hD/3] (where 1 < D < 4 is the space dimensionality). It is demonstrated that in terms of the replica formalism this contribution to the free energy comes due to non-perturbative replica instanton excitations.  相似文献   

9.
An analysis is given of the behavior of an interface above a stepped substrate in the presence of an external pinning potential for the lattice solid-on-solid (SOS) interface model in 2D. Step-free energy including step-step interaction free energy is calculated, for large step separation. It is found it vanishes at temperatures lower thanT w (wetting transition temperature), which is different from the case having only one step on a substrate where, as it is well known, step-free energy vanishes at the wetting transition.  相似文献   

10.
We explore analytically the nature of the transition to the Fulde-Ferrel-Larkin-Ovchinnikov superfluid phases in the vicinity of the tricritical point, where these phases begin to appear. We make use of an expansion of the free energy up to an overall sixth order, both in order parameter amplitude and in wavevector. We first explore the minimization of this free energy within a subspace, made of arbitrary superpositions of plane waves with wavevectors of different orientations but same modulus. We show that the standard second order FFLO phase transition is unstable and that a first order transition occurs at higher temperature. Within this subspace we prove that it is favorable to have a real order parameter and that, among these states, those with the smallest number of plane waves are preferred. This leads to an order parameter with a cos( . ) dependence, in agreement with preceding work. Finally we show that the order parameter at the transition is only very slightly modified by higher harmonics contributions when the constraint of working within the above subspace is released. Received 20 February 2002 / Received in final form 4 June 2002 Published online 13 August 2002  相似文献   

11.
12.
A model free energy has been constructed to describe the RIV-RIII rotator phase transition in alkanes in terms of the elastic strains and order parameter. The conditions for the RIV-RIII phase transition are discussed. From the free energy, the order parameter and the elastic strains are determined. The model free energy describes the first or second order character of the RIV-RIII transition depending on the strength of the coupling. The elastic properties in the vicinity of the RIV-RIII transition are discussed on the basis of a free energy expansion. The temperature dependence of the elastic constants is calculated on both sides of the transition. The coupling between the order parameter and elastic stains is shown to have a crucial influence on the phase behavior and the order of the transition.  相似文献   

13.
The spherical model of a ferromagnet is investigated for various (external) boundary conditions. It is shown that, besides the well-known critical point, a second one can be produced by the boundary conditions. Although the main asymptotic of the free energy is analytic at the new critical point, theO(N1–2/d) asymptotic possesses a singularity here. A natural order parameter of the model has singularities at both critical points. The magnetization profile is studied for the whole range of the model's parameters and at different scales. It is shown that (in an appropriate regime) below the second critical temperature the magnetization profile freezes, that is, becomes temperature independent. Distributions of the single spin variables and some macroscopic observables (including normalized total spin) are studied for the whole temperature range including the critical points.  相似文献   

14.
The nature of the phase transition for the XY stacked triangular antiferromagnet (STA) is a controversial subject at present. The field theoretical renormalization group (RG) in three dimensions predicts a first order transition. This prediction disagrees with Monte-Carlo (MC) simulations which favor a new universality class or a tricritical transition. We simulate by the Monte-Carlo method two models derived from the STA by imposing the constraint of local rigidity which should have the same critical behavior as the original model. A strong first order transition is found. Following Zumbach we analyze the second order transition observed in MC studies as due to a fixed point in the complex plane. We review the experimental results in order to clarify the critical behavior observed. Received: 18 February 1998 / Revised: 24 April 1998 / Accepted: 30 April 1998  相似文献   

15.
I review some theories of the interaction ofN Rydberg atoms interacting collectively with radiation in microwave cavities. The radiation may be incoherent (black body) radiation or it may be coherent. In the former case theories of the steady state inversion and of the superradiance from initially inverted atoms in low-Q cavities agree well with experimental observations. In the latter case in low-Q cavities ‘phase transitions’ of both first and second order types are predicted and should be observable by monitoring the output of an atomic beam by an atomic ionisation detector. The first order transition which occurs at opposite detunings of the cavity and atoms from the frequency of the coherent driving field is of “optically” bistable type but hysteresis is suppressed by quantum fluctuations which can be large in the cavity field close to the transition. I also review a theory of the spectra from single atoms in cavities ofarbitrary Q containing a few microwave photons. A transition from a single peaked Lorentzian spectrum at low-Q to a double-peaked spectrum forQ≃106 is predicted and peaks representing one or more photon transitions of the Jaynes-Cummings model are also expected to be observable at these or largerQ values. The collective theories are all based onN atom Dicke type models driven by the coherent or incoherent field. Substantial squeezing of the fluorescent radiation field from these Dicke models is also predicted and may be observable with Rydberg atoms.  相似文献   

16.
We present an exact three-dimensional massive Kiselev AdS black hole solution. This Kiselev black hole is neither perfectly fluid, nor is it the quintessential solution, but the BTZ black hole modified by the anisotropic matter. This black hole possesses an essential singularity at its radial origin and a single horizon whose radius will increase monotonically when the parameter of the anisotropic matter field ω decreases. We calculate all thermodynamic quantities and find that the first law of thermodynamics of this massive Kiselev AdS black hole can be protected, while the consistent Smarr formula is only held in the extended thermodynamic phase space. After examining the sign of free energy, we conclude that there is no Hawking-Page transition since the massive Kiselev AdS black hole phase is always thermodynamically favored. Moreover, we study the phase transition between the Kiselev AdS black hole and BTZ black hole by considering the matchings for their temperature. We find that the Kiselev AdS black hole is still a thermodynamically more preferred phase, because it always has a smaller amount of free energy than the BTZ black hole, which seems to indicate that the anisotropic matter field may emerge naturally in BTZ black hole spacetime under some thermal fluctuations. We also show a first order phase transition between the Kiselev AdS black hole phase with -1w -1/2 and the black hole phase with -1/2w0. As the Kiselev AdS black hole has some notable features on the phase transition of black holes in three dimensions, it provides important clues to further investigate these both surprising and similar behaviors in four and higher dimensions.  相似文献   

17.
The temperature and pressure dependences of band-edge photoluminescence from ZnO microrods have been investigated. The energy separation between the free exciton (FX) and its first order phonon replica (FX-1LO) decreases at a rate of kBT with increasing temperature. The intensity ratio of the FX-1LO to the bound exciton (BX) emission is found to decrease slightly with increasing pressure. All of the exciton emission peaks show a blue shift with increasing pressure. The pressure coefficient of the FX transition, longitudinal optical (LO) phonon energy, and binding energy of BX are estimated to be 21.4, 0.5, and 0.9 meV/GPa, respectively.  相似文献   

18.
We study the adsorption cross-over of ideal polymer chains in an environment of disordered traps. Starting from the assumption of an optimal cluster size of traps (optimal fluctuation method) we derive a general scaling form of the free energy function for arbitrary spatial dimensions. For small concentrations of traps we find a cross-over from localized (adsorbed) behavior to delocalized behavior depending on the chain's length and on the depth of the traps; this is connected with the non-monotonic behavior of the chain's extension. In terms of the free energy of the chain this cross-over resembles a first order transition scenario, the chain gets localized at many traps at once. Received 18 November 1998  相似文献   

19.
The Mott-Hubbard metal-insulator transition is studied within a simplified version of the Dynamical Mean-Field Theory (DMFT) in which the coupling between the impurity level and the conduction band is approximated by a single pole at the Fermi energy. In this approach, the DMFT equations are linearized, and the value for the critical Coulomb repulsion can be calculated analytically. For the symmetric single-band Hubbard model at zero temperature, the critical value is found to be given by 6 times the square root of the second moment of the free (U=0) density of states. This result is in good agreement with the numerical value obtained from the Projective Selfconsistent Method and recent Numerical Renormalization Group calculations for the Bethe and the hypercubic lattice in infinite dimensions. The generalization to more complicated lattices is discussed. The “linearized DMFT” yields plausible results for the complete geometry dependence of the critical interaction. Received 6 May 1999 and Received in final form 2 July 1999  相似文献   

20.
By means of molecular dynamics computer simulations we investigate the out of equilibrium relaxation dynamics of a simple glass former, a binary Lennard-Jones system, after a quench to low temperatures. We find that one-time quantities, such as the energy or the structure factor, show only a weak time dependence. By comparing the out of equilibrium structure factor with equilibrium data we find evidence that during the aging process the system remains in that part of phase space that mode-coupling theory classifies as liquid like. Two-times correlation functions show a strong time and waiting time dependence. For large and times corresponding to the early -relaxation regime the correlators approach the Edwards-Anderson value by means of a power-law in time. For large but fixed values of the relaxation dynamics in the -relaxation regime seems to be independent of the observable and temperature. The -relaxation shows a power-law dependence on time with an exponent which is independent of but depends on the observable. We find that at long times the correlation functions can be expressed as and compute the function h(t). This function is found to show a t-dependence which is a bit stronger than a logarithm and to depend on the observable considered. If the system is quenched to very low temperatures the relaxation dynamics at long times shows fast drops as a function of time. We relate these drops to relatively local rearrangements in which part of the sample relaxes its stress by a collective motion of 50-100 particles. Finally we discuss our measurements of the time dependent response function. We find that at long times the correlation functions and the response are not related by the usual fluctuation dissipation theorem but that this relation is similar to the one found for spin glasses with one step replica symmetry breaking. Received 17 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号