首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ciaramella  G.  Vanzan  T. 《Numerical Algorithms》2022,91(1):413-448

Two-level Schwarz domain decomposition methods are very powerful techniques for the efficient numerical solution of partial differential equations (PDEs). A two-level domain decomposition method requires two main components: a one-level preconditioner (or its corresponding smoothing iterative method), which is based on domain decomposition techniques, and a coarse correction step, which relies on a coarse space. The coarse space must properly represent the error components that the chosen one-level method is not capable to deal with. In the literature, most of the works introduced efficient coarse spaces obtained as the span of functions defined on the entire space domain of the considered PDE. Therefore, the corresponding two-level preconditioners and iterative methods are defined in volume. In this paper, we use the excellent smoothing properties of Schwarz domain decomposition methods to define, for general elliptic problems, a new class of substructured two-level methods, for which both Schwarz smoothers and coarse correction steps are defined on the interfaces (except for the application of the smoother that requires volumetric subdomain solves). This approach has several advantages. On the one hand, the required computational effort is cheaper than the one required by classical volumetric two-level methods. On the other hand, our approach does not require, like classical multi-grid methods, the explicit construction of coarse spaces, and it permits a multilevel extension, which is desirable when the high dimension of the problem or the scarce quality of the coarse space prevents the efficient numerical solution. Numerical experiments demonstrate the effectiveness of the proposed new numerical framework.

  相似文献   

2.
The finite element (FE) solution of geotechnical elasticity problems leads to the solution of a large system of linear equations. For solving the system, we use the preconditioned conjugate gradient (PCG) method with two-level additive Schwarz preconditioner. The preconditioning is realised in parallel. A coarse space is usually constructed using an aggregation technique. If the finite element spaces for coarse and fine problems on structural grids are fully compatible, relations between elements of matrices of the coarse and fine problems can be derived. By generalization of these formulae, we obtain an overlapping aggregation technique for the construction of a coarse space with smoothed basis functions. The numerical tests are presented at the end of the paper.  相似文献   

3.
In this paper, we present a parallel Newton–Krylov–Schwarz (NKS)‐based non‐linearly implicit algorithm for the numerical solution of the unsteady non‐linear multimaterial radiation diffusion problem in two‐dimensional space. A robust solver technology is required for handling the high non‐linearity and large jumps in material coefficients typically associated with simulations of radiation diffusion phenomena. We show numerically that NKS converges well even with rather large inflow flux boundary conditions. We observe that the approach is non‐linearly scalable, but not linearly scalable in terms of iteration numbers. However, CPU time is more important than the iteration numbers, and our numerical experiments show that the algorithm is CPU‐time‐scalable even without a coarse space given that the mesh is fine enough. This makes the algorithm potentially more attractive than multilevel methods, especially on unstructured grids, where course grids are often not easy to construct. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Aleš Janka 《PAMM》2007,7(1):1025901-1025902
We discuss the advantages of using algebraic multigrid based on smoothed aggregation for solving indefinite linear problems. The ingredients of smoothed aggregation are used to construct a black-box monolithic multigrid method with indefinite coarse problems. Although we discuss some techniques for enforcing the uniform inf-sup stability on all coarse levels, numerical experiments suggest that it is not strictly necessary. The proposed multigrid preconditioner shows robust behaviour for different time-step parameters and even for very elongated geometries, where other techniques based on h -independent preconditioners of the pressure Schur complement lose their efficiency. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Summary. In this paper we introduce a class of robust multilevel interface solvers for two-dimensional finite element discrete elliptic problems with highly varying coefficients corresponding to geometric decompositions by a tensor product of strongly non-uniform meshes. The global iterations convergence rate is shown to be of the order with respect to the number of degrees of freedom on the single subdomain boundaries, uniformly upon the coarse and fine mesh sizes, jumps in the coefficients and aspect ratios of substructures. As the first approach, we adapt the frequency filtering techniques [28] to construct robust smoothers on the highly non-uniform coarse grid. As an alternative, a multilevel averaging procedure for successive coarse grid correction is proposed and analyzed. The resultant multilevel coarse grid preconditioner is shown to have (in a two level case) the condition number independent of the coarse mesh grading and jumps in the coefficients related to the coarsest refinement level. The proposed technique exhibited high serial and parallel performance in the skin diffusion processes modelling [20] where the high dimensional coarse mesh problem inherits a strong geometrical and coefficients anisotropy. The approach may be also applied to magnetostatics problems as well as in some composite materials simulation. Received December 27, 1994  相似文献   

6.
石钟慈  谢正辉 《计算数学》1997,19(3):313-328
1.引言设0是RZ中的有界多边形区域,其边界为Rfl.考虑下面的重调和Dirichlet问题:(1.1)的变分形式为:求。EHI(fi)使得对?/EL‘(m,问题(1.幻的唯一可解性可由冯(m上的M线性型的强制性和连续性以及La。Mlgram定理得出(of[4]).令人一{丸)是n的一个三角剖分,并且满足最小角条件,其中h是它的网格参数.设Vh为Money元空间[41.问题(1.2)的有限元离散问题为:求。eVh使得当有限元参数人很小时,这个方程组很大,而且矩阵A的条件数变得非常大,直接求解,存贮量及计算量都很大.如果B可逆,则方程组(1.4)等…  相似文献   

7.
Summary. We analyze an additive Schwarz preconditioner for the p-version of the boundary element method for the single layer potential operator on a plane screen in the three-dimensional Euclidean space. We decompose the ansatz space, which consists of piecewise polynomials of degree p on a mesh of size h, by introducing a coarse mesh of size . After subtraction of the coarse subspace of piecewise constant functions on the coarse mesh this results in local subspaces of piecewise polynomials living only on elements of size H. This decomposition yields a preconditioner which bounds the spectral condition number of the stiffness matrix by . Numerical results supporting the theory are presented. Received August 15, 1998 / Revised version received November 11, 1999 / Published online December 19, 2000  相似文献   

8.
Domain decomposition for multiscale PDEs   总被引:3,自引:1,他引:2  
We consider additive Schwarz domain decomposition preconditioners for piecewise linear finite element approximations of elliptic PDEs with highly variable coefficients. In contrast to standard analyses, we do not assume that the coefficients can be resolved by a coarse mesh. This situation arises often in practice, for example in the computation of flows in heterogeneous porous media, in both the deterministic and (Monte–Carlo simulated) stochastic cases. We consider preconditioners which combine local solves on general overlapping subdomains together with a global solve on a general coarse space of functions on a coarse grid. We perform a new analysis of the preconditioned matrix, which shows rather explicitly how its condition number depends on the variable coefficient in the PDE as well as on the coarse mesh and overlap parameters. The classical estimates for this preconditioner with linear coarsening guarantee good conditioning only when the coefficient varies mildly inside the coarse grid elements. By contrast, our new results show that, with a good choice of subdomains and coarse space basis functions, the preconditioner can still be robust even for large coefficient variation inside domains, when the classical method fails to be robust. In particular our estimates prove very precisely the previously made empirical observation that the use of low-energy coarse spaces can lead to robust preconditioners. We go on to consider coarse spaces constructed from multiscale finite elements and prove that preconditioners using this type of coarsening lead to robust preconditioners for a variety of binary (i.e., two-scale) media model problems. Moreover numerical experiments show that the new preconditioner has greatly improved performance over standard preconditioners even in the random coefficient case. We show also how the analysis extends in a straightforward way to multiplicative versions of the Schwarz method. We would like to thank Bill McLean for very useful discussions concerning this work. We would also like to thank Maksymilian Dryja for helping us to improve the result in Theorem 4.3.  相似文献   

9.
Two‐level overlapping Schwarz methods for elliptic partial differential equations combine local solves on overlapping domains with a global solve of a coarse approximation of the original problem. To obtain robust methods for equations with highly varying coefficients, it is important to carefully choose the coarse approximation. Recent theoretical results by the authors have shown that bases for such robust coarse spaces should be constructed such that the energy of the basis functions is minimized. We give a simple derivation of a method that finds such a minimum energy basis using one local solve per coarse space basis function and one global solve to enforce a partition of unity constraint. Although this global solve may seem prohibitively expensive, we demonstrate that a one‐level overlapping Schwarz method is an effective and scalable preconditioner and we show that such a preconditioner can be implemented efficiently using the Sherman–Morrison–Woodbury formula. The result is an elegant, scalable, algebraic method for constructing a robust coarse space given only the supports of the coarse space basis functions. Numerical experiments on a simple two‐dimensional model problem with a variety of binary and multiscale coefficients confirm this. Numerical experiments also show that, when used in a two‐level preconditioner, the energy‐minimizing coarse space gives better results than other coarse space constructions, such as the multiscale finite element approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
We introduce a class of multilevel recursive incomplete LU preconditioning techniques (RILUM) for solving general sparse matrices. This technique is based on a recursive two by two block incomplete LU factorization on the coefficient matrix. The coarse level system is constructed as an (approximate) Schur complement. A dynamic preconditioner is obtained by solving the Schur complement matrix approximately. The novelty of the proposed techniques is to solve the Schur complement matrix by a preconditioned Krylov subspace method. Such a reduction process is repeated to yield a multilevel recursive preconditioner.  相似文献   

11.
Recently, some new multilevel preconditioners for solving elliptic finite element discretizations by iterative methods have been proposed. They are based on appropriate splittings of the finite element spaces under consideration, and may be analyzed within the framework of additive Schwarz schemes. In this paper we discuss some multilevel methods for discretizations of the fourth-order biharmonic problem by rectangular elements and derive optimal estimates for the condition numbers of the preconditioned linear systems. For the Bogner–Fox–Schmit rectangle, the generalization of the Bramble–Pasciak–Xu method is discussed. As a byproduct, an optimal multilevel preconditioner for nonconforming discretizations by Adini elements is also derived.  相似文献   

12.
We consider a scalar advection-diffusion problem and a recently proposed discontinuous Galerkin approximation, which employs discontinuous finite element spaces and suitable bilinear forms containing interface terms that ensure consistency. For the corresponding sparse, nonsymmetric linear system, we propose and study an additive, two-level overlapping Schwarz preconditioner, consisting of a coarse problem on a coarse triangulation and local solvers associated to a family of subdomains. This is a generalization of the corresponding overlapping method for approximations on continuous finite element spaces. Related to the lack of continuity of our approximation spaces, some interesting new features arise in our generalization, which have no analog in the conforming case. We prove an upper bound for the number of iterations obtained by using this preconditioner with GMRES, which is independent of the number of degrees of freedom of the original problem and the number of subdomains. The performance of the method is illustrated by several numerical experiments for different test problems using linear finite elements in two dimensions.

  相似文献   


13.
We develop a quasi‐two‐level, coarse‐mesh‐free characteristic nonoverlapping domain decomposition method for unsteady‐state convection‐diffusion partial differential equations in multidimensional spaces. The development of the domain decomposition method is carried out by utilizing an additive Schwarz domain decomposition preconditioner, by using an Eulerian‐Lagrangian method for convection‐diffusion equations and by delicately choosing appropriate interface conditions that fully respect and utilize the hyperbolic nature of the governing equations. Numerical experiments are presented to illustrate the method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

14.
Abstract In this paper we study some nonoverlapping domain decomposition methods for solving a classof elliptic problems arising from composite materials and flows in porous media which contain many spatialscales. Our preconditioner differs from traditional domain decomposition preconditioners by using a coarsesolver which is adaptive to small scale heterogeneous features. While the convergence rate of traditional domaindecomposition algorithms using coarse solvers based on linear or polynomial interpolations may deteriorate inthe presence of rapid small scale oscillations or high aspect ratios, our preconditioner is applicable to multiple-scale problems without restrictive assumptions and seems to have a convergence rate nearly independent ofthe aspect ratio within the substructures. A rigorous convergence analysis based on the Schwarz framework iscarried out, and we demonstrate the efficiency and robustness of the proposed preconditioner through numericalexperiments which include problems with multipl  相似文献   

15.
We propose a simple and effective hybrid (multiplicative) Schwarz precondtioner for solving systems of algebraic equations resulting from the mortar finite element discretization of second order elliptic problems on nonmatching meshes. The preconditioner is embedded in a variant of the classical preconditioned conjugate gradient (PCG) for an effective implementation reducing the cost of computing the matrix-vector multiplication in each iteration of the PCG. In fact, it serves as a framework for effective implementation of a class of hybrid Schwarz preconditioners. The preconditioners of this class are based on solving a sequence of non-overlapping local subproblems exactly, and the coarse problems either exactly or inexactly (approximately). The classical PCG algorithm is reformulated in order to make reuse of the results of matrix-vector multiplications that are already available from the preconditioning step resulting in an algorithm which is cost effective. An analysis of the proposed preconditioner, with numerical results, showing scalability with respect to the number of subdomains, and a convergence which is independent of the jumps of the coefficients are given.  相似文献   

16.
The goal of this work is to derive and justify a multilevel preconditioner of optimal arithmetic complexity for symmetric interior penalty discontinuous Galerkin finite element approximations of second order elliptic problems. Our approach is based on the following simple idea given in [R.D. Lazarov, P.S. Vassilevski, L.T. Zikatanov, Multilevel preconditioning of second order elliptic discontinuous Galerkin problems, Preprint, 2005]. The finite element space of piece-wise polynomials, discontinuous on the partition , is projected onto the space of piece-wise constant functions on the same partition that constitutes the largest space in the multilevel method. The discontinuous Galerkin finite element system on this space is associated to the so-called “graph-Laplacian”. In 2-D this is a sparse M-matrix with -1 as off diagonal entries and nonnegative row sums. Under the assumption that the finest partition is a result of multilevel refinement of a given coarse mesh, we develop the concept of hierarchical splitting of the unknowns. Then using local analysis we derive estimates for the constants in the strengthened Cauchy–Bunyakowski–Schwarz (CBS) inequality, which are uniform with respect to the levels. This measure of the angle between the spaces of the splitting was used by Axelsson and Vassilevski in [Algebraic multilevel preconditioning methods II, SIAM J. Numer. Anal. 27 (1990) 1569–1590] to construct an algebraic multilevel iteration (AMLI) for finite element systems. The main contribution in this paper is a construction of a splitting that produces new estimates for the CBS constant for graph-Laplacian. As a result we have a preconditioner for the system of the discontinuous Galerkin finite element method of optimal arithmetic complexity.  相似文献   

17.
Summary. We study preconditioners for the -version of the boundary element method for hypersingular integral equations in three dimensions. The preconditioners are based on iterative substructuring of the underlying ansatz spaces which are constructed by using discretely harmonic basis functions. We consider a so-called wire basket preconditioner and a non-overlapping additive Schwarz method based on the complete natural splitting, i.e. with respect to the nodal, edge and interior functions, as well as an almost diagonal preconditioner. In any case we add the space of piecewise bilinear functions which eliminate the dependence of the condition numbers on the mesh size. For all these methods we prove that the resulting condition numbers are bounded by . Here, is the polynomial degree of the ansatz functions and is a constant which is independent of and the mesh size of the underlying boundary element mesh. Numerical experiments supporting these results are reported. Received July 8, 1996 / Revised version received January 8, 1997  相似文献   

18.
We analyze a multilevel diagonal additive Schwarz preconditioner for the adaptive coupling of FEM and BEM for a linear 2D Laplace transmission problem. We rigorously prove that the condition number of the preconditioned system stays uniformly bounded, independently of the refinement level and the local mesh‐size of the underlying adaptively refined triangulations. Although the focus is on the nonsymmetric Johnson–Nédélec one‐equation coupling, the principle ideas also apply to other formulations like the symmetric FEM‐BEM coupling. Numerical experiments underline our theoretical findings. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 603–632, 2017  相似文献   

19.
Higher order finite element discretizations, although providing higher accuracy, are considered to be computationally expensive and of limited use for large‐scale problems. In this paper, we have developed an efficient iterative solver for solving large‐scale quadratic finite element problems. The proposed approach shares some common features with geometric multigrid methods but does not need structured grids to create the coarse problem. This leads to a robust method applicable to finite element problems discretized by unstructured meshes such as those from adaptive remeshing strategies. The method is based on specific properties of hierarchical quadratic bases. It can be combined with an algebraic multigrid (AMG) preconditioner or with other algebraic multilevel block factorizations. The algorithm can be accelerated by flexible Krylov subspace methods. We present some numerical results on the convection–diffusion and linear elasticity problems to illustrate the efficiency and the robustness of the presented algorithm. In these experiments, the performance of the proposed method is compared with that of an AMG preconditioner and other iterative solvers. Our approach requires less computing time and less memory storage. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Hackbusch's frequency decomposition multilevel method is characterized by the application of three additional coarse-grid corrections in parallel to the standard one. Each coarse-grid correction was designed to damp errors from a different part of the frequency spectrum. In this paper, we introduce a cheap variant of this method, partly based on semicoarsening, which demands fewer recursive calls than the original version. Using the theory of the additive Schwarz methods, we will prove robustness of our method as a preconditioner applied to anisotropic equations.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号