首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An exhaustive kinetic model for the atoms in a 1D magneto-optical trap is derived, without any approximations. It is shown that the atomic density is described by a Vlasov-Fokker-Planck equation, coupled with two simple differential equations describing the trap beam propagation. The analogy of such a system with plasmas is discussed. This set of equations is then simplified through some approximations, and it is shown that corrective terms have to be added to the models usually used in this context.  相似文献   

2.
The cloud of cold atoms obtained from a magneto-optical trap is known to exhibit two types of instabilities in the regime of high atomic densities: stochastic instabilities and deterministic instabilities. In the present paper, the experimentally observed stochastic dynamics is described extensively. It is shown that it exists a variety of dynamical behaviors, which differ by the frequency components appearing in the dynamics. Indeed, some instabilities exhibit only low frequency components, while in other cases, a second time scale, corresponding to a higher frequency, appears in the motion of the center of mass of the cloud. A one-dimensional stochastic model taking into account the shadow effect is shown to be able to reproduce the experimental behavior, linking the existence of instabilities to folded stationary solutions where noise response is enhanced. The different types of regimes are explained by the existence of a relaxation frequency, which in some conditions is excited by noise.Received: 18 June 2003, Published online: 28 October 2003PACS: 32.80.Pj Optical cooling of atoms; trapping - 05.40.Ca Noise - 05.45.-a Nonlinear dynamics and nonlinear dynamical systems  相似文献   

3.
We report the first observation of a nondipole transition in an ultracold atomic vapor. We excite the 3P-4P electric quadrupole (E2) transition in 23Na confined in a magneto-optical trap, and we demonstrate its application to high-resolution spectroscopy by making the first measurement of the hyperfine structure of the 4P(1/2) level and extracting the magnetic dipole constant A=30.6+/-0.1 MHz. We use cw optical-optical double resonance accompanied by photoionization to probe the transition.  相似文献   

4.
We have operated a magneto-optical trap and optical molasses for the laser cooling of cesium atoms on the basis of a five-beam laser configuration. For the magneto-optical trap two laser beams counterpropagate along the axis of a quadrupole trap and the remaining three beams propagate in the orthogonal plane at 120° to each other. The same optical configuration was used for the optical molasses. We have tested the efficiency in atom collection and the temperatures reached in both cooling processes. In comparison to previous results on a six-beam configuration, a lower number of atoms is collected, while comparable densities are realized. The atomic temperatures have been measured through a delayed shadow-image technique, where one of the running-wave cooling beams produces an absorptive image of the atoms on a camera. Received: 14 January 1999 / revised version: 23 June 1999 / Published online: 8 September 1999  相似文献   

5.
The cloud of cold atoms obtained from a magneto-optical trap is known to exhibit two types of instabilities in the regime of high atomic densities: stochastic instabilities and deterministic instabilities. In the present paper, the experimentally observed deterministic dynamics is described extensively. Three different behaviors are distinguished. All are cyclic, but not necessarily periodic. Indeed, some instabilities exhibit a cyclic behavior with an erratic return time. A one-dimensional stochastic model taking into account the shadow effect is shown to be able to reproduce the experimental behavior, linking the instabilities to a several bifurcations. Erraticity of some of the regimes is shown to be induced by noise.Received: 27 April 2004, Published online: 23 July 2004PACS: 32.80.Pj Optical cooling of atoms; trapping - 05.45.-a Nonlinear dynamics and nonlinear dynamical systems - 05.40.Ca Noise  相似文献   

6.
谢笛舟  卜文浩  颜波 《中国物理 B》2016,25(5):53701-053701
Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However,due to the complex energy levels and the small effective Lande g-factor of the excited states, the traditional magneto-optical trap(MOT) scheme does not work very well for polar molecules. One way to overcome this problem is the switching MOT,which requires very fast switching of both the magnetic field and the laser polarizations. Switching laser polarizations is relatively easy, but fast switching of the magnetic field is experimentally challenging. Here we propose an alternative approach, the microwave-mediated MOT, which requires a slight change of the current experimental setup to solve the problem. We calculate the MOT force and compare it with the traditional MOT and the switching MOT scheme. The results show that we can operate a good MOT with this simple setup.  相似文献   

7.
The characteristics of a magneto-optical trap (MOT) using small-diameter cooling laser beams are considered. Trapping and cooling of Rb atoms from the surrounding gas of warm atoms takes place in the trap. A compact (140 μm) and stable atomic cloud is obtained with a density of 7 × 1010 cm?3, which is three orders of magnitude higher than the density of the surrounding gas.  相似文献   

8.
We demonstrate a new type of high-resolution two-photon frequency modulation (FM) spectroscopy with cold atoms in a magneto-optical trap. Instead of modulating the probe as in ordinary FM spectroscopy, we modulate the trap itself by FM of the trapping beams. We present theoretical as well as experimental results for both absorption and polarization rotation spectroscopy. Finally, we demonstrate two-photon FM spectroscopy, using the intrinsic phase noise of the trapping diode lasers.  相似文献   

9.
We have observed self-sustained radial oscillations in a large magneto-optical trap, containing up to 10(10) Rb85 atoms. This instability is due to the competition between the confining force of the magneto-optical trap and the repulsive interaction associated with multiple scattering of light inside the cold atomic cloud. A simple analytical model allows us to formulate a criterion for the instability threshold, in fair agreement with our observations. This criterion shows that large numbers of trapped atoms N>10(9) are required to observe this unstable behavior.  相似文献   

10.
马红玉  成华东  王育竹  刘亮 《中国物理 B》2008,17(11):4180-4183
This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. The remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.  相似文献   

11.
12.
We experimentally demonstrate the possibility of preparing ultracold atoms in the environment of weightlessness at the earth-bound short-term microgravity laboratory Drop Tower Bremen, a facility of ZARM – University of Bremen. Our approach is based on a freely falling magneto-optical trap (MOT) drop tower experiment performed within the ATKAT collaboration (“Atom-Catapult”) as a preliminary part of the QUANTUS pilot project (“Quantum Systems in Weightlessness”) pursuing a Bose–Einstein condensate (BEC) in microgravity at the drop tower [1, 2]. Furthermore we give a complete account of the specific drop tower requirements to realize a compact and robust setup for trapping and cooling neutral rubidium 87Rb atoms in microgravity conditions. We also present the results of the first realized freely falling MOT and further accomplished experiments during several drops. The goal of the preliminary ATKAT pilot project is to initiate a basis for extended atom-optical experiments which aim at realizing, observing and investigating ultracold quantum matter in microgravity. PACS 67.85.-d  相似文献   

13.
Atomic beam guide by a one-dimensional magneto-optical trap   总被引:1,自引:0,他引:1  
An atomic beam has been collimated, compressed, and deflected simultaneously by an atomic beam guide based on an inclined one-dimensional magneto-optical trap (1D-MOT). Isotope-selected rubidium atoms were extracted from the naturally-mixed thermal atomic beam with this method. We could manipulate the transverse displacement of the deflected beam precisely by adjusting the current in the copper rods to generate the quadrupole magnetic field. We could extract more than 50% of the incident atoms as a deflection beam when we combined this deflection technique with the atomic deceleration using a broadband spectral light. Received: 10 December 1998 / Published online: 24 June 1999  相似文献   

14.
We present analytical and numerical study of high-order parametric resonance in a driven magneto-optical trap of cold atoms. We have obtained the general solutions for parametric resonance of arbitrary order. In particular, the amplitude and phase of atomic limit-cycle motion is expressed as a function of the modulation amplitude and frequency. Moreover, the atomic dynamics for high-order parametric resonance is investigated in terms of the Hamiltonian approach, which is useful in studying transitions between attractors. We find that the analytical results are in good agreement with the numerical calculations.  相似文献   

15.
16.
We report the first observation of translationally cold ( approximately 90 &mgr;K) Rb2 molecules. They are produced in a magneto-optical trap in their triplet ground state. The detection is performed by selective mass spectroscopy after two-photon ionization into Rb+2, resonantly enhanced through the intermediate a (3)Sigma(+)(u)-->2 (3)Pi(g) molecular band. The two rubidium isotopes present very different types of behavior that are interpreted in terms of their respective collisional properties.  相似文献   

17.
Electromagnetically induced absorption (EIA) was observed for the first time on a sample of 85Rb in a magneto-optical trap using low intensity cw copropagating pump and probe optical fields. Narrow resonances revealing the dependence of the ground-state Zeeman sublevels energy structure on the quadrupolar magnetic field and the trapping optical field intensity at different trap positions, were observed. Coherence resonances as narrow as 30 kHz were obtained under low trapping field intensities. The use of EIA spectroscopy for the magnetic field mapping of cold atomic samples is illustrated.  相似文献   

18.
19.
Magneto optical traps (MOT) allow the cooling and storing of neutral atoms in a volume of a few cubic millimeters by use of laser beams and a magnetic field. Such devices offer new and exciting opportunities for precision measurements of radioactive isotopes. Here we present experiments performed with a double-MOT system coupled to the on-line separator TISOL at TRIUMF/Vancouver, Canada. For the first time, the Β-decay of free atoms stored in such a device could be observed. We report on coincidence measurements between beta-particles and the argon recoils in the decay of 37K and 38rm{m}}K. The charge state ratios of the recoil-ions were deduced by Time-Of-Flight separation in an acceleration field. The final goal of those investigations is a precision test of the Standard Model by measuring the –nu-correlation parameter a. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A detailed account of various experimental techniques developed during the study on the decay rate coefficient of laser trapped 7Li atoms are presented. The frequency of a dye laser is stabilized using a simple sealed-off cell specially designed for Li vapor. The accurate number of trapped atoms are obtained by measuring the fluorescence intensity and the population ratio between the ground and the excited states by absorption coefficient measurement. The absolute value of the collisional lossrate coefficient of trapped 7Li atoms is determined by analyzing the temporal change of the fluorescence intensity when the supply of the Li beam is turned off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号