首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mediated photon-photon interactions are realized in a superconducting coplanar waveguide cavity coupled to a superconducting charge qubit. These nonresonant interactions blockade the transmission of photons through the cavity. This so-called dispersive photon blockade is characterized by measuring the total transmitted power while varying the energy spectrum of the photons incident on the cavity. A staircase with four distinct steps is observed and can be understood in an analogy with electron transport and the Coulomb blockade in quantum dots. This work differs from previous efforts in that the cavity-qubit excitations retain a photonic nature rather than a hybridization of qubit and photon and provides the needed tolerance to disorder for future condensed matter experiments.  相似文献   

2.
The role of interface couplings on the energy transport of two coupled Frenkel–Kontorova (FK) chains is explored through numerical simulations. In general, it is expected that the interface couplings result in the suppression of heat conduction through the coupled system due to the additional interface phonon–phonon scattering. In the present paper, it is found that the thermal conductivity increases with increasing intensity of interface interactions for weak inter-chain couplings, whereas the heat conduction is suppressed by the interface interaction in the case of strong inter-chain couplings. Based on the phonon spectral energy density method, we demonstrate that the enhancement of energy transport results from the excited phonon modes (in addition to the intrinsic phonon modes), while the strong interface phonon–phonon scattering results in the suppressed energy transport.  相似文献   

3.
We study the mechanism of van der Waals(vdW)interactions on phonon transport in atomic scale,which would boost developments in heat management and energy conversion.Commonly,the vdW interactions are regarded as a hindrance in phonon transport.Here we propose that the vdW confinement can enhance phonon transport.Through molecular dynamics simulations,it is realized that the vdW confinement is able to make more than two-fold enhancement on thermal conductivity of both polyethylene single chain and graphene nanoribbon.The quantitative analyses of morphology,local vdW potential energy and dynamical properties are carried out to reveal the underlying physical mechanism.It is found that the confined vdW potential barriers reduce the atomic thermal displacement magnitudes,leading to less phonon scattering and facilitating thermal transport.Our study offers a new strategy to modulate the phonon transport.  相似文献   

4.
陈晓彬  段文晖 《物理学报》2015,64(18):186302-186302
低维材料不断涌现的新奇性质吸引着科学研究者的目光. 除了电子的量子输运行为之外, 人们也陆续发现和确认了热输运中显著的量子行为, 如 热导低温量子化、声子子带、尺寸效应、瓶颈效应等. 这些小尺度体系的热输运性质可以很好地用非平衡格林函数来描述. 本文首先介绍了量子热输运的特性、声子非平衡格林函数方法及其在低维纳米材料中的研究进展; 其次回顾了近年来在 一系列低维材料中发现的热-自旋输运现象. 这些自旋热学现象展现了全新的热电转换机制, 有助于设计新型的热电转换器件, 同时也给出了用热产生自旋流的新途径; 最后介绍了线性响应理论以及在此理论框架下结合声子、电子非平衡格林函数方法进行的一些有益的探索. 量子热输运的研究对热效应基础研究以及声子学器件、能量转换器件的发展有着不可替代的重要作用.  相似文献   

5.
Using ensemble Monte Carlo simulation technique, we have calculated the transport properties of InN such as the drift velocity, the drift mobility, the average electron, energy relaxation times and momentum relaxation times at high electric field. The scattering mechanisms included scattering mechanisms are polar optical phonon, ionized impurity, acoustic phonon and intervalley phonon. It is found that the maximum peak velocity only occurs when the electric field is increased to a value above a certain critical field. This critical field is strongly dependent on InN parameters. The steady-state transport parameters are in fair agreement with other recent calculations.  相似文献   

6.
We analyze the photon statistics of a weakly driven cavity quantum electrodynamics system and discuss the effects of photon blockade and photon-induced tunneling by effectively utilizing instead of avoiding the center-of-mass motion of a two-level atom trapped in the cavity. With the resonant interaction between atom, photon and phonon, it is shown that the bunching and anti-bunching of photons can occur with properly driving frequency. Our study shows the influence of the imperfect cooling of atom on the blockade and provides an attempt to take advantage of the center-of-mass motion.  相似文献   

7.
We have theoretically investigated the effect of a coating made of the elastically dissimilar material on the acoustic phonon properties of semiconductor nanowires. It is shown that the acoustic impedance mismatch at the interface between the nanowire and the barrier coating affects dramatically the phonon spectra and group velocities in the nanowires. Coatings made of materials with a small sound velocity lead to compression of the phonon energy spectrum and strong reduction of the phonon group velocities. The coatings made of materials with a high sound velocity have opposite effect. Our calculations reveal substantial re-distribution of the elastic deformations in coated nanowires, which results in modification of the phonon transport properties, and corresponding changes in thermal and electrical conduction. We argue that tuning of the coated nanowire material parameters and the barrier layer thickness can be used for engineering the transport properties in such nanostructures.  相似文献   

8.
The electrons and phonons in metal films after ultra-short pulse laser heating are in highly non-equilibrium states not only between the electrons and the phonons but also within the electrons. An electrohydrodynamics model consisting of the balance equations of electron density, energy density of electrons, and energy density of phonons is derived from the coupled non-equilibrium electron and phonon Boltzmann transport equations to study the nonlinear thermal transport by considering the electron density fluctuation and the transient electric current in metal films, after ultra-short pulse laser heating. The temperature evolution is calculated by the coupled electron and phonon Boltzmann transport equations, the electrohydrodynamics model derived in this work, and the two-temperature model. Different laser pulse durations, film thicknesses, and laser fluences are considered. We find that the two-temperature model overestimates the electron temperature at the front surface of the film and underestimates the damage threshold when the nonlinear thermal transport of electrons is important. The electrohydrodynamics model proposed in this work could be a more accurate prediction tool to study the non-equilibrium electron and phonon transport process than the two-temperature model and it is much easier to be solved than the Boltzmann transport equations.  相似文献   

9.
We propose a three-terminal heat engine based on semiconductor superlattices for energy harvesting. The periodicity of the superlattice structure creates an energy miniband, giving an energy window for allowed electron transport. We find that this device delivers a large power, nearly twice than the heat engine based on quantum wells, with a small reduction of efficiency. This engine also works as a refrigerator in a different regime of the system's parameters. The thermoelectric performance of the refrigerator is analyzed, including the cooling power and coefficient of performance in the optimized condition. We also calculate phonon heat current through the system and explore the reduction of phonon heat current compared to the bulk material. The direct phonon heat current is negligible at low temperatures, but dominates over the electronic at room temperature and we discuss ways to reduce it.  相似文献   

10.
11.
We numerically analyze the interaction of small-amplitude phonon waves with standing gap discrete breather (DB) in strained graphene. To make the system support gap DB, strain is applied to create a gap in the phonon spectrum. We only focus on the in-plane phonons and DB, so the issue is investigated under a quasi-one-dimensional setup. It is found that, for the longitudinal sound waves having frequencies below 6 THz, DB is transparent and thus no radiation of energy from DB takes place; whereas for those sound waves with higher frequencies within the acoustic (optical) phonon band, phonon is mainly transmitted (reflected) by DB, and concomitantly, DB radiates its energy when interacting with phonons. The latter case is supported by the fact that, the sum of the transmitted and reflected phonon energy densities is noticeably higher than that of the incident wave. Our results here may provide insight into energy transport in graphene when the spatially localized nonlinear vibration modes are presented.  相似文献   

12.
We study the electronic transport in the presence of electron–phonon interaction (EPI) for a molecular electronic device. Instead of mean field approximation (MFA), the related phonon correlation function is conducted with the Langreth theorem (LT). We present formal expressions for the bandwidth of the electron’s spectral function in the central region of the devices, such as quantum dot (QD), or single molecular transistor (SMT). Our results show that the out-tunneling rate depends on the energy, bias voltage and the phonon field. Besides, the predicted conductance map, behaving as a function of bias voltage and the gate voltage, gets blurred at the high bias voltage region. These EPI effects are consistent with the experimental observations in the EPI transport experiment.  相似文献   

13.
Energy transport in silicon-aluminum thin films is examined during the laser short-pulse irradiation subjected to the silicon film. The silicon film is considered to be at the top of the aluminum film. Thermal boundary resistance at the interface of the films is incorporated in the analysis. The absorption of laser radiation in the silicon and aluminum films is modeled using the transfer matrix method. Since the silicon film is dielectric, the phonon radiative transport basing the Boltzmann transport equation is incorporated to determine equivalent equilibrium temperature in the film while modified two-equation model is used to account for the non-equilibrium energy transport due to thermal separation of electron and phonon sub-systems in the aluminum film during the laser short-pulse heating process.  相似文献   

14.
The influence of the anisotropy of elastic energy on the phonon propagation and phonon transport in single crystal nanofilms with different types of anisotropy of elastic energy in a Knudsen flow of a phonon gas is studied. The angular distribution of phonon mean free paths in the planes of the films and in their cross section is analyzed. The physical reasons leading to the dependence of the thermal conductivity on the orientation of the film planes and the directions of the heat flux relative to the crystal axes are studied. An analysis of the effect of focusing on the phonon propagation made it possible to explain the qualitative difference between the anisotropy of phonon mean free paths in films of cubic nanocrystals of various types having different orientations of the planes.  相似文献   

15.
Sr-doped Ba0.7La0.3TiO3(BSLTO)thin films are deposited by pulsed laser deposition,and their microstructure,conductivity,carrier transport mechanism,and ferroelectricity are systematically investigated.The x-ray diffraction measurements demonstrate that Sr-doping reduces the lattice constant of BSLTO thin films,resulting in the enhanced phonon energy in the films as evidenced by the Raman measurements.Resistivity-temperature and Hall effect measurements demonstrate that Sr can gradually reduce electrical resistivity while the electron concentration remains almost unchanged at high temperatures.For the films with semiconducting behavior,the charge transport model transforms from variable range hopping to small polaron hopping as the measurement temperature increases.The metalic conductive behaviors in the films with Sr=0.30,0.40 conform to thermal phonon scattering mode.The difference in charge transport behavior dependent on the A-site cation doping,is clarified.It is revealed that the increasing of phonon energy by Sr doping is responsible for lower activation energy of small polaron hopping,higher carrier mobility,and lower electrical resistivity.Interestingly,the piezoelectric force microscopy(PFM)results demonstrate that all the BSLTO films can exhibit ferroelectricity,especially for the room temperature metallic conduction film with Sr=0.40.These results imply that Sr-doping could be a potential way to explore ferroelectric metal materials for other perovskite oxides.  相似文献   

16.
Properties of phonons-quanta of the crystal lattice vibrations-in graphene have recently attracted significant attention from the physics and engineering communities. Acoustic phonons are the main heat carriers in graphene near room temperature, while optical phonons are used for counting the number of atomic planes in Raman experiments with few-layer graphene. It was shown both theoretically and experimentally that transport properties of phonons, i.e. energy dispersion and scattering rates, are substantially different in a quasi-two-dimensional system such as graphene compared to the basal planes in graphite or three-dimensional bulk crystals. The unique nature of two-dimensional phonon transport translates into unusual heat conduction in graphene and related materials. In this review, we outline different theoretical approaches developed for phonon transport in graphene, discuss contributions of the in-plane and cross-plane phonon modes, and provide comparison with available experimental thermal conductivity data. Particular attention is given to analysis of recent results for the phonon thermal conductivity of single-layer graphene and few-layer graphene, and the effects of the strain, defects, and isotopes on phonon transport in these systems.  相似文献   

17.
Electronic transport in a model molecular device coupled to local phonon modes is theoretically analyzed. The method allows for obtaining an accurate approximation of the system's quantum state irrespective of the electron and phonon energy scales. Nonlinear electrical features emerge from the calculated current-voltage characteristics. The quantum corrections with respect to the adiabatic limit characterize the transport scenario, and the polaronic reduction of the effective device-lead coupling plays a fundamental role in the unusual electrical features.  相似文献   

18.
With the rapidly increasing integration density and power density in nanoscale electronic devices, the thermal management concerning heat generation and energy harvesting becomes quite crucial. Since phonon is the major heat carrier in semiconductors, thermal transport due to phonons in mesoscopic systems has attracted much attention. In quantum transport studies, the nonequilibrium Green’s function (NEGF) method is a versatile and powerful tool that has been developed for several decades. In this review, we will discuss theoretical investigations of thermal transport using the NEGF approach from two aspects. For the aspect of phonon transport, the phonon NEGF method is briefly introduced and its applications on thermal transport in mesoscopic systems including one-dimensional atomic chains, multi-terminal systems, and transient phonon transport are discussed. For the aspect of thermoelectric transport, the caloritronic effects in which the charge, spin, and valley degrees of freedom are manipulated by the temperature gradient are discussed. The time-dependent thermoelectric behavior is also presented in the transient regime within the partitioned scheme based on the NEGF method.  相似文献   

19.
张睿智  陈文灏  杨璐娜 《物理学报》2012,61(18):187201-187201
采用玻尓兹曼输运方程与密度泛函计算相结合的方法, 理论研究了限域效应与界面效应对SrTiO3纳米陶瓷热电性能的影响. 理论计算的结果表明, 室温下纳米陶瓷的热电优值较单晶有了大幅度提高, 可达到0.8. 热电优值的提高主要来源于晶粒内的声子限域效应与电子在晶界处的界面能量过滤效应, 电子的限域效应与声子的界面散射效应起到了辅助作用. 本文结论也可推广至其他材料, 因此对高性能热电纳米陶瓷的设计将起到积极的作用.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号