首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
We propose and analyze a general mechanism of disorder-induced order in two-component Bose-Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a random Raman coupling induces a relative phase of pi/2 between the two BECs and that the effect is robust. We demonstrate it in one, two, and three dimensions at T=0 and present evidence that it persists at small T>0. Applications to phase control in ultracold spinor condensates are discussed.  相似文献   

2.
Two spatially separate Bose-Einstein condensates were prepared in an optical double-well potential. A bidirectional coupling between the two condensates was established by two pairs of Bragg beams which continuously outcoupled atoms in opposite directions. The atomic currents induced by the optical coupling depend on the relative phase of the two condensates and on an additional controllable coupling phase. This was observed through symmetric and antisymmetric correlations between the two outcoupled atom fluxes. A Josephson optical coupling of two condensates in a ring geometry is proposed. The continuous outcoupling method was used to monitor slow relative motions of two elongated condensates and characterize the trapping potential.  相似文献   

3.
We measure the relative phase of two Bose-Einstein condensates confined in a radio frequency induced double-well potential on an atom chip. We observe phase coherence between the separated condensates for times up to approximately 200 ms after splitting, a factor of 10 longer than the phase diffusion time expected for a coherent state for our experimental conditions. The enhanced coherence time is attributed to number squeezing of the initial state by a factor of 10. In addition, we demonstrate a rotationally sensitive (Sagnac) geometry for a guided atom interferometer by propagating the split condensates.  相似文献   

4.
王志霞  张喜和  沈柯 《中国物理 B》2008,17(9):3270-3275
We investigate the dynamics of two tunnel-coupled Bose--Einstein condensates (BECs) in a double-well potential. The effects of the three-body recombination loss and the feeding of the condensates from the thermal cloud are studied in the case of attractive interatomic interaction. An imaginary three-body interaction term is considered and a two-mode approximation is used to derive three coupled equations which describe the total atomic numbers of the two condensates, the relative population and relative phase respectively. Theoretical analyses and numerical calculations demonstrate the existence of chaotic and hyperchaotic behaviour by using a periodically time-varying scattering length.  相似文献   

5.
We study theoretically the properties of two Bose-Einstein condensates in different spin states, represented by a double Fock state. Individual measurements of the spins of the particles are performed in transverse directions, giving access to the relative phase of the condensates. Initially, this phase is completely undefined, and the first measurements provide random results. But a fixed value of this phase rapidly emerges under the effect of the successive quantum measurements, giving rise to a quasiclassical situation where all spins have parallel transverse orientations. If the number of measurements reaches its maximum (the number of particles), quantum effects show up again, giving rise to violations of Bell type inequalities. The violation of Bell-Clauser-Horne-Shimony-Holt inequalities with an arbitrarily large number of spins may be comparable (or even equal) to that obtained with two spins.  相似文献   

6.
A trapped-atom interferometer was demonstrated using gaseous Bose-Einstein condensates coherently split by deforming an optical single-well potential into a double-well potential. The relative phase between the two condensates was determined from the spatial phase of the matter wave interference pattern formed upon releasing the condensates from the separated potential wells. Coherent phase evolution was observed for condensates held separated by 13 microm for up to 5 ms and was controlled by applying ac Stark shift potentials to either of the two separated condensates.  相似文献   

7.
We propose a scheme to generate maximally entangled states of two distant Bose-Einstein condensates, which are trapped in different potential wells of a one-dimensional optical lattice. We show how such maximally entangled state can be used to test the Bell inequality and realize quantum teleportation of a Bose-Einstein condensate state. The scheme proposed here is based on the interference of Bose-Einstein condensates leaking out from different potential wells of optical lattice. It is briefly pointed out that this scheme can be extended to generate maximally entangled Greenberger-Horne-Zeilinger (GHZ) states of 2m (m >1) distant Bose-Einstein condensates.  相似文献   

8.
《中国物理 B》2021,30(10):106701-106701
We consider two-dimensional spinor F = 1 Bose–Einstein condensates in two types of radially-periodic potentials with spin–orbit coupling, i.e., spin-independent and spin-dependent radially-periodic potentials. For the Bose–Einstein condensates in a spin-independent radially-periodic potential, the density of each component exhibits the periodic density modulation along the azimuthal direction, which realizes the necklacelike state in the ferromagnetic Bose–Einstein condensates. As the spin-exchange interaction increases, the necklacelike state gradually transition to the plane wave phase for the antiferromagnetic Bose–Einstein condensates with larger spin–orbit coupling. The competition of the spin-dependent radially-periodic potential, spin–orbit coupling, and spin-exchange interaction gives rise to the exotic ground-state phases when the Bose–Einstein condensates in a spin-dependent radially-periodic potential.  相似文献   

9.
We use the time-dependent variational approach to demonstrate how the modulational and oscillatory instabilities can be generated in Bose–Einstein condensates (BECs) trapped in a periodic optical lattice with weak driving harmonic potential. We derive and analyze the ordinary differential equations for the time evolution of the amplitude and phase of the modulational perturbation, and obtain the instability condition of the condensates through the effective potential. The effect of the optical potential on the dynamics of the BECs is shown. We perform direct numerical simulations to support our theoretical findings, and good agreement is found.  相似文献   

10.
We discuss a scheme for using entangled Bose-Einstein condensates to detect phase differences with a resolution better than the standard quantum limit. To date, schemes have shown that the enhancement in phase resolution gained by entangling condensates is lost when dissipation is present. Here we show how this can be overcome by using number correlated condensates, as have been produced recently in the laboratory. We also outline a scheme for measuring this phase that is not destroyed when the effects of finite detector efficiency are considered.  相似文献   

11.
We examine bosons hopping on a one-dimensional lattice in the presence of a random potential at zero temperature. Bogoliubov excitations of the Bose-Einstein condensate formed under such conditions are localized, with the localization length diverging at low frequency as l(omega) approximately 1/omega(alpha). We show that the well-known result alpha=2 applies only for sufficiently weak random potential. As the random potential is increased beyond a certain strength, alpha starts decreasing. At a critical strength of the potential, when the system of bosons is at the transition from a superfluid to an insulator, alpha=1. This result is relevant for understanding the behavior of the atomic Bose-Einstein condensates in the presence of random potential, and of the disordered Josephson junction arrays.  相似文献   

12.
The relative phase of two initially independent Bose-Einstein condensates can be laser cooled to unite the two condensates by putting them into a ring cavity and coupling them with an internal Josephson junction. First, we show that this phase cooling process already appears within a semiclassical model. We calculate the stationary states, find regions of bistable behavior, and suggest a Ramsey-type experiment to measure the buildup of phase coherence between the condensates. We also study quantum effects and imperfections of the system.  相似文献   

13.
We study the properties of mixed quark–gluon condensate at finite temperature and chemical potential in the framework of global color symmetry model. In comparing with the quark condensate, we confirm that both of these condensates give the same information about chiral phase transition. We also find that the ratio of these two condensates is insensitive to the temperature T and the chemical potential μ, which supports the conclusion obtained recently by the authors using quenched lattice QCD.  相似文献   

14.
We measure the intensity correlation function of two interfering spatially displaced copies of phase fluctuating Bose-Einstein condensates. It is shown that this corresponds to a measurement of the phase correlation properties of the initial condensate. Analogous to the method used in the stellar interferometer experiment of Hanbury Brown and Twiss, we use spatial intensity correlations to determine the phase coherence lengths of elongated condensates. We find good agreement with our prediction of the correlation function and confirm the expected coherence length.  相似文献   

15.
We study the dynamical formation of disoriented chiral condensates in very high energy nucleus-nucleus collisions using Bjorken hydrodynamics and relativistic nucleation theory. It is the dynamics of the first order confinement phase transition which controls the evolution of the system. Every bubble or fluctuation of the new, hadronic, phase obtains its own chiral condensate with a probability determined by the Boltzmann weight of the finite temperature effective potential of the linear sigma model. We evaluate domain size and chiral angle distributions, which can be used as initial conditions for the solution of semiclassical field equations.  相似文献   

16.
We report the formation of Bose-Einstein condensates into nonequilibrium states. Our condensates are much longer than equilibrium condensates with the same number of atoms, show strong phase fluctuations, and have a dynamical evolution similar to that of quadrupole shape oscillations of regular condensates. The condensates emerge in elongated traps as the result of local thermalization when the nucleation time is short compared to the axial oscillation time. We introduce condensate focusing as a new method to extract the phase-coherence length of Bose-Einstein condensates.  相似文献   

17.
The formation of vortices by topological phase engineering has been realized experimentally to create the first two- and four-quantum vortices in dilute atomic Bose-Einstein condensates. We consider a similar system, but in addition to the Ioffe-Pritchard magnetic trap we employ an additional hexapole field. By controlling cyclically the strengths of these magnetic fields, we show that a fixed amount of vorticity can be added to the condensate in each cycle. In an adiabatic operation of this vortex pump, the appearance of vortices into the condensate is interpreted as the accumulation of a local Berry phase. Our design can be used as an experimentally realizable vortex source for possible vortex-based applications of dilute Bose-Einstein condensates.  相似文献   

18.
刘燕  张素英 《计算物理》2015,32(6):744-750
应用托马斯-费米近似和虚时演化数值方法研究环形势阱中旋转玻色爱因斯坦凝聚体的基态密度分布.当增加其旋转角频率,或者增加环形势阱的宽度及相应的中心高度,凝聚体基态密度分布均从涡旋晶格相转变为巨涡旋相.当旋转角频率为零时,增加环形势阱的宽度及相应的中心高度,凝聚体基态密度分布从一个圆盘变为圆环.解析结果与数值结果相互吻合.  相似文献   

19.
We consider theoretically a phase-locking transition in Bose–Einstein condensate in an optical lattice in the regime where system can realized as a three-dimensional Josephson junction array. The coherence between adjacent Bose condensates (trapped in the valleys of the periodic potential) caused by the Josephson tunneling can lead to a phase transition with a global phase coherence at certain critical temperature. Using a model Hamiltonian of Josephson weakly coupled Bose condensates we calculate the critical temperature for the three-dimensional system placed in a simple cubic lattice and discuss the result in the context of system parameters and possible experiments.  相似文献   

20.
We study the phase coherence property of Bose-Einstein condensates confined in a one-dimensional optical lattice formed by a standing-wave laser field. The lattice depth is determined using a method of Kapitza-Dirac scattering between a condensate and a short pulse lattice potential. Condensates are then adiabatically loaded into the optical lattice. The phase coherence property of the confined condensates is reflected by the interference patterns of the expanded atomic cloud released from the optical lattice. For weak lattice, nearly all of the atoms stay in a superfluid state. However, as the lattice depth is increased, the phase coherence of the whole condensate sample is gradually lost, which confirms that the sub-condensates in each lattice well have evolved into number-squeezed states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号