首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Glycoproteins on epithelial tumor cells often exhibit aberrant glycosylation profiles. The incomplete formation of the glycan side chains resulting from a down-regulated glucosamine transfer and a premature sialylation results in additional peptide epitopes, which become accessible to the immune system in mucin-type glycoproteins. These cancer-specific structure alterations are considered to be a promising basis for selective immunological attack on tumor cells. Among the tumor-associated saccharide antigens, the (2,3)-sialyl-T antigen has been identified as the most abundant glycan, found in several different carcinoma cell lines. According to a linear biomimetic strategy, the (2,3)-sialyl-T antigen was synthesized by a stepwise glycan chain extension of a protected galactosamine-threonine precursor. For the construction of immunostimulating antigens combining both peptide and saccharide motifs, this antigen was incorporated into glycopeptide partial structures from the mucins MUC1 and MUC4 by sequential solid-phase synthesis.  相似文献   

2.
To study the effect of O-glycosylation on the conformational propensities of a peptide backbone, a 20-residue peptide (GSTAPPAHGVTSAPDTRPAP) representing the full length tandem repeat sequence of the human mucin MUC1 and its analogue glycosylated with the (2,6)-sialyl-T antigen on Thr11, were prepared and investigated by NMR and molecular modeling. The peptides contain both the GVTSAP sequence, which is an effective substrate for GalNAc transferases, and the PDTRP fragment, a known epitope recognized by several anti-MUC1 monoclonal antibodies. It has been shown that glycosylation of threonine in the GVTSAP sequence is a prerequisite for subsequent glycosylation of the serine at GVTSAP. Furthermore, carbohydrates serve as additional epitopes for MUC1 antibodies. Investigation of the solution structure of the sialyl-T glycoeicosapeptide in a H(2)O/D(2)O mixture (9:1) under physiological conditions (25 degrees C and pH 6.5) revealed that the attachment of the saccharide side-chain affects the conformational equilibrium of the peptide backbone near the glycosylated Thr11 residue. For the GVTSA region, an extended, rod-like secondary structure was found by restrained molecular dynamics simulation. The APDTR region formed a turn structure which is more flexibly organized. Taken together, the joined sequence GVTSAPDTR represents the largest structural model of MUC1 derived glycopeptides analyzed so far.  相似文献   

3.
The Tn, T, sialyl-Tn, and 2,3-sialyl-T antigens are tumor-associated carbohydrate antigens expressed on mucins in epithelial cancers, such as those affecting the breast, ovary, stomach, and colon. Glycopeptides carrying these antigens are of interest for development of cancer vaccines and a short, chemoenzymatic strategy for their synthesis is reported. Building blocks corresponding to the Tn (GalNAc alpha-Ser/Thr) and T [Gal beta(1-->3)GalNAc alpha-Ser/Thr] antigens, which are relatively easy to obtain by chemical synthesis, were prepared and then used in the synthesis of glycopeptides on the solid phase. Introduction of sialic acid to give the sialyl-Tn [Neu5Ac alpha(2-->6)GalNAc alpha-Ser/Thr] and 2,3-sialyl-T [Neu5Ac alpha(2-->3)Gal beta(1-->3)GalNAc alpha-Ser/Thr] antigens is difficult when performed chemically at the building block level. Sialylation was therefore carried out with recombinant sialyltransferases in solution after cleavage of the Tn and T glycopeptides from the solid phase. In the same manner, the core 2 trisaccharide [Gal beta 1-->3(GlcNAc beta 1-->6)GalNAc] was incorporated in glycopeptides containing the T antigen by using a recombinant N-acetylglucosaminyltransferase. The outlined chemoenzymatic approach was applied to glycopeptides from the tandem repeat domain of the mucin MUC1, as well as to neoglycosylated derivatives of a T cell stimulating viral peptide.  相似文献   

4.
The tumor-associated carbohydrate antigens TN, T, sialyl TN and sialyl T are expressed on mucins in several epithelial cancers. This has stimulated studies directed towards development of glycopeptide-based anticancer vaccines. Formation of intramolecular lactones involving sialic acid residues and suitably positioned hydroxyl groups in neighboring saccharide moieties is known to occur for glycolipids such as gangliosides. It has been suggested that these lactones are more immunogenic and tumor-specific than their native counterparts and that they might find use as cancer vaccines. We have now investigated if lactonization also occurs for the sialyl TN and T antigens of mucins. It was found that the model compound sialyl T benzyl glycoside , and the glycopeptide Ala-Pro-Asp-Thr-Arg-Pro-Ala from the tandem repeat of the mucin MUC1, in which Thr stands for the 2,3-sialyl-T antigen, lactonized during treatment with glacial acetic acid. Compound gave the 1'--> 2' lactone as the major product and the corresponding 1'--> 4' lactone as the minor product. For glycopeptide the 1'--> 4' lactone constitued the major product, whereas the 1'--> 2' lactone was the minor one. When lactonized was dissolved in water the 1'--> 4' lactone underwent slow hydrolysis, whereas the 1'--> 2' remained stable even after a 30 days incubation. In contrast the corresponding 2,6-sialyl-TN glycopeptide did not lactonize in glacial acetic acid.  相似文献   

5.
Multivalent synthetic vaccines were obtained by solid‐phase synthesis of tumor‐associated MUC1 glycopeptide antigens and their coupling to a Pam3Cys lipopeptide through click reactions. These vaccines elicited immune responses in mice without the use of any external adjuvant. The vaccine containing four copies of a MUC1 sialyl‐TN antigen showed a significant cluster effect. It induced in mice prevailing IgG2a antibodies, which bind to MCF‐7 breast tumor cells and initiate the killing of these tumor cells by activation of the complement‐dependent cytotoxicity complex.  相似文献   

6.
The membrane‐bound tumor‐associated glycoprotein MUC1 is aberrantly glycosylated in cancer cells compared with normal cells, and is therefore considered an attractive target for cancer immunotherapy. However, tumor‐associated glycopeptides from MUC1 do not elicit a sufficiently robust immune response. Therefore, antitumor vaccines were developed, which consist of MUC1 glycopeptides as the B epitopes and immune‐stimulating toll‐like receptor 2 (TLR 2) lipopeptide ligands. These fully synthetic vaccine candidates were prepared by solid‐phase synthesis of the MUC1 glycopeptides. The Pam3Cys lipopeptide, also synthesized on solid‐phase, was C‐terminally coupled to oligovalent lysine cores, which N‐terminally incorporate O‐propargyl oligoethylene glycol acyl side chains. The MUC1 glycopeptides and lipopeptide lysine constructs were then conjugated by click chemistry to give oligovalent synthetic vaccines. Oligovalent glycopeptide–lipopeptide conjugates are considered more immunogenic than their monovalent analogues.  相似文献   

7.
In studies within the realm of cancer immunotherapy, the synthesis of exactly specified tumor‐associated glycopeptide antigens is shown to be a key strategy for obtaining a highly selective biological reagent, that is, a monoclonal antibody that completely differentiates between tumor and normal epithelial cells and specifically marks the tumor cells in pancreas tumors. Mucin MUC1, which is overexpressed in many prevalent cancers, was identified as a promising target for this strategy. Tumor‐associated MUC1 differs significantly from that expressed by normal cells, in particular by altered glycosylation. Structurally defined tumor‐associated MUC1 cannot be isolated from tumor cells. We synthesized MUC1–glycopeptide vaccines and analyzed their structure–activity relationships in immunizations; a monoclonal antibody that specifically distinguishes between human normal and tumor epithelial cells was thus generated.  相似文献   

8.
Self‐adjuvanting tricomponent vaccines were prepared and assessed for their self‐assembly and immunological activity in mouse models. The vaccines each consisted of a peptide or glycopeptide antigen that corresponds to a complete copy of the variable‐number tandem repeat (VNTR) of the tumor‐associated mucin 1 (MUC1) glycoprotein, the universal T‐cell helper peptide epitope PADRE, and the immunoadjuvant Pam3CysSer. The vaccines were shown to spontaneously self‐assemble in water to form isotropic particles varying in size from 17 to 25 nm and elicited robust humoral responses in murine models without the addition of an external adjuvant. The serum antibodies could recognize tumor‐associated MUC1 epitopes on the surface of MCF7 breast‐cancer cells and B16 melanoma cells, which overexpress this tumor‐associated glycoprotein.  相似文献   

9.
In the development of vaccines for epithelial tumors, the key targets are MUC1 proteins, which have a variable number of tandem repeats (VNTR) bearing tumor-associated carbohydrate antigens (TACAs), such as Tn and STn. A major obstacle in vaccine development is the low immunogenicity of the short MUC1 peptide. To overcome this obstacle, we designed, synthesized, and evaluated several totally synthetic self-adjuvanting vaccine candidates with self-assembly domains. These vaccine candidates aggregated into fibrils and displayed multivalent B-cell epitopes under mild conditions. Glycosylation of Tn antigen on the Thr residue of PDTRP sequence in MUC1 VNTR led to effective immune response. These vaccines elicited a high level antibody response without any adjuvant and induced antibodies that recognized human breast tumor cells. These vaccines appeared to act through a T-cell independent pathway and were associated with the activation of cytotoxic T cells. These fully synthetic, molecularly defined vaccine candidates had several features that hold promise for anticancer therapy.  相似文献   

10.
In a new concept of fully synthetic vaccines, the role of T‐helper cells is emphasized. Here, a synthetic antitumor vaccine consisting of a diglycosylated tumor‐associated MUC1 glycopeptide as the B‐cell epitope was covalently cross‐linked with three different T‐helper‐cell epitopes via squaric acid ligation of two linear (glyco)peptides. In mice this four‐component vaccine administered without external immune‐stimulating promoters elicit titers of MUC1‐specific antibodies that were about eight times higher than those induced by a vaccine containing only one T‐helper‐cell epitope. The promising results indicate that multiple activation of different T‐helper cells is useful for applications in which increased immunogenicity is required. In personalized medicine, in particular, this flexible construction of a vaccine can serve as a role model, for example, when T‐helper‐cell epitopes are needed that match human leukocyte antigens (HLA) in different patients.  相似文献   

11.
Pathogenic organisms or oncogenically transformed cells often express complex carbohydrate structures at their cell surface, which are viable targets for active immunotherapy. We describe here a novel, immunologically neutral, linker methodology for the efficient preparation of highly defined vaccine conjugates that combine complex saccharide antigens with specific TH-cell peptide epitopes. This novel heterobifunctional approach was employed for the conjugation of a (1-->2)-beta-mannan trisaccharide from the pathogenic fungus Candida albicans as well as the carbohydrate portion of tumor-associated ganglioside GM2 to a TH-cell peptide epitope derived from the murine 60 kDa self heat-shock protein (hsp60). Moreover, the linkage chemistry has proven well suited for the synthesis of more complex target structures such as a biotinylated glycopeptide, a three component vaccine containing an immunostimulatory peptide epitope from interleukin-1 beta (IL-1 beta), and for the conjugation of complex carbohydrates to carrier proteins such as bovine serum albumin.  相似文献   

12.
《Tetrahedron》2019,75(52):130776
A new synthetic method for preparing Tn glycoconjugate polymers, containing tumor-associated carbohydrate antigens, by controlled living radical polymerization is reported. To mimic the authentic structures of Tn glycopeptide antigens and to explore the controlled living radical polymerization, three tumor-associated carbohydrate antigens (GalNAc, GalNAcα1-O-Ser, and GalNAcα1-O-Thr) were attached to a styrene-type monomer through a diethylene glycol spacer. Under nitroxide-mediated polymerization, controlled living radical polymerization proceeded to afford defined glycopeptide polymers with different Tn densities and compositions. The polydispersity index (PDI) and molecular weights were increased and conversions were decreased upon increasing the concentration of Tn glycoconjugate monomers. The resulting Tn glycoconjugate polymers were characterized by NMR and IR. The spectral data indicate that the Tn glycoconjugate moiety did attach to the polymer chain and Tn glycoconjugate density could be adjusted through the nitroxide-mediated polymerization conditions. The number of Tn units containing in the polymer chains could be estimated by NMR integration. This synthetic approach provides a new and efficient tool for constructing novel Tn glycoconjugate polymers.  相似文献   

13.
The (2-phenyl-2-trimethylsilyl)ethyl-(PTMSEL) linker represents a novel fluoride-sensitive anchor for the solid-phase synthesis of protected peptides and glycopeptides. Its cleavage is achieved under almost neutral conditions using tetrabutylammonium fluoride trihydrate in dichloromethane thus allowing the construction of complex molecules sensitive to basic and acidic media commonly required for the cleavage of standard linker systems. The advantages of the PTMSEL linker are demonstrated in the synthesis of glycopeptides from the liver intestine (LI)-cadherin and the mucin MUC1, bearing carbohydrate moieties such as N-linked chitobiose or O-linked sialyl-T(N)-residues. The synthesis of these types of glycopeptides is difficult because they are prone to secondary structure formation during the synthesis on the solid phase as well as in the completely deprotected form. Using the PTMSEL linker these molecules are accessible by automated synthesis according to the Fmoc strategy without frequently observed side reactions such as aspartimide or diketopiperazine formation.  相似文献   

14.
Until about 1990 there was general consent about the assumption that only protein and peptide antigens have the capacity of CD4(+) or CD8(+) T-cell stimulation. Since about ten years evidence is now accumulating that carbohydrate-peptide epitopes do play a role in classical MHC-mediated immune responses. This holds true for glycopeptides, where the glycan chain is short and not located at an "anchor residue" needed for MHC interaction. T-cell recognition of O-glycosylated peptides is potentially of high biomedical significance, because it can mediate the immune protection against microorganisms, the vaccination in anti-tumor therapies, but also some aspects of autoimmunity. The epithelial type 1 transmembrane mucin MUC1 is established as a marker for monitoring recurrence of breast cancer and is a promising target for immunotherapeutic strategies to treat cancer by active specific immunization. Natural human immune responses to the tumor-associated glycoforms of the mucin indicate that antibody reactivities are more directed to glycopeptide than to non-glycosylated peptide epitopes. To overcome the weak immunogenicity of the natural target, heavily O-glycosylated MUC1, the question was addressed whether O-linked glycans remain intact during processing in the MHC class II pathway and interfere with endosomal processing and peptide presentation. Attempts were made to define on a biochemical level the structural requirements for an efficient endosomal proteolysis catalyzed by cathepsin L in antigen-presenting cells. Evidence based on work with CD4(+) T-hybridomas confirms that O-glycopeptides can be effectively presented to T-cells and that glycans can form integral parts of the TCR defined epitopes. Similar approaches are currently followed in the MHC class I pathway which aim at the identification of immunogenic glycopeptides generated by immunoproteasomes.  相似文献   

15.
For antitumor vaccines both the selected tumor‐associated antigen, as well as the mode of its presentation, affect the immune response. According to the principle of multiple antigen presentation, a tumor‐associated MUC1 glycopeptide combined with the immunostimulating T‐cell epitope P2 from tetanus toxoid was coupled to a multi‐functionalized hyperbranched polyglycerol by “click chemistry”. This globular polymeric carrier has a flexible dendrimer‐like structure, which allows optimal antigen presentation to the immune system. The resulting fully synthetic vaccine induced strong immune responses in mice and IgG antibodies recognizing human breast‐cancer cells.  相似文献   

16.
A novel MUC1-glycopeptide-BSA conjugate vaccine with a specifically fluorinated Thomsen-Friedenreich antigen side chain at Thr6 was prepared. Preliminary immunological experiments reveal specific binding of the tumor-associated glycopeptide antigen analog by anti-MUC1-mouse antibodies.  相似文献   

17.
The synthesis of glycopeptides carrying tumour-associated antigens is of interest for cancer diagnosis and treatment. Here, a very efficient route lo disaccharide threonine building block 8 is presented which allows the introduction of the sialyl-Tn antigen into a peptide. The syntheses of the undecapeptide and the sialyl-Tn-containing glycoundecapeptide, which are a part of the repeating unit of MUC1, were performed by solid-phase synthesis with an allylic anchor cleavable under neutral conditions. After detachment from the resin, the peptide and the glycopeptide arc completely deprotected giving the target compounds 13 and 15 , respectively.  相似文献   

18.
A convergent synthesis of a unimolecular pentavalent-MUC1 glycopeptide has been accomplished. A tandem repeat of unglycosylated human tumor-associated MUC1, a potential target for cancer immunotherapy, was incorporated into the known unimolecular pentavalent carbohydrate construct (5). This is an important step toward the development of a new fully synthetic anticancer vaccine candidate (1).  相似文献   

19.
A MUC1-related glycopeptide having five core-2 hexasaccharide branches (C330H527N46O207, MW = 8450.9) was synthesized by a new strategy using a combination of microwave-assisted solid-phase synthesis (MA-SPGS) and enzymatic sugar elongation. Synthesis of a key glycopeptide intermediate was best achieved in a combination of PEGA [poly(ethylene glycol)-poly-(N,N-dimethylacrylamide) copolymer] resin and MA-SPGS using glycosylated amino acid building blocks with high speed and high purity. Deprotection of the glycopeptide intermediate and subsequent glycosyltransferase-catalyzed sugar elongations were performed for generation of the additional diversities with the sugar moieties of glycopeptides using beta1,4-galactosyltransferase (beta1,4-GalT) and two kinds of alpha2,3-sialyltransferases [ST3Gal III; alpha2,3-(N)-SiaT and ST3Gal II; alpha2,3-(O)-SiaT]. These reactions proceeded successfully in the presence of 0.2% Triton X-100 to convert the chemically synthesized trisaccharide glycans to disialylated hexasaccharide.  相似文献   

20.
The syntheses of various fluorinated MUC1 glycopeptide antigens and their specific binding to serum antibodies from mice immunized with natural and fluorinated TF(6)-MUC1-TTox conjugate vaccines are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号