首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We consider the Casimir force acting on a d-dimensional rectangular piston due to a massless scalar field with periodic, Dirichlet and Neumann boundary conditions and an electromagnetic field with perfect electric-conductor and perfect magnetic-conductor boundary conditions. The Casimir energy in a rectangular cavity is derived using the cut-off method. It is shown that the divergent part of the Casimir energy does not contribute to the Casimir force acting on the piston, thus renders an unambiguously defined Casimir force acting on the piston. At any temperature, it is found that the Casimir force acting on the piston increases from −∞ to 0 when the separation a between the piston and the opposite wall increases from 0 to ∞. This implies that the Casimir force is always an attractive force pulling the piston towards the closer wall, and the magnitude of the force gets larger as the separation a gets smaller. Explicit exact expressions for the Casimir force for small and large plate separations and for low and high temperatures are computed. The limits of the Casimir force acting on the piston when some pairs of transversal plates are large are also derived. An interesting result regarding the influence of temperature is that in contrast to the conventional result that the leading term of the Casimir force acting on a wall of a rectangular cavity at high temperature is the Stefan–Boltzmann (or black-body radiation) term which is of order T d+1, it is found that the contributions of this term from the two regions separating the piston cancel with each other in the case of piston. The high-temperature leading-order term of the Casimir force acting on the piston is of order T, which shows that the Casimir force has a nontrivial classical →0 limit. Explicit formulas for the classical limit are computed.  相似文献   

2.
We study the Bose-Einstein condensation for a 3-d system of ideal Bose gas which is harmonically trapped along two perpendicular directions and is confined in between two slabs along the other perpendicular direction. We calculate the Casimir force between the two slabs for this system of trapped Bose gas. At finite temperatures this force for thermalized photons in between two plates has a classical expression which is independent of ħ. At finite temperatures the Casimir force for our system depends on ħ. For the calculation of Casimir force we consider only the Dirichlet boundary condition. We show that below condensation temperature (Tc) the Casimir force for this non-interacting system decreases with temperature (T) and at , it is independent of temperature. We also discuss the Casimir effect on 3-d highly anisotropic harmonically trapped ideal Bose gas.  相似文献   

3.
The infrared behaviour of quantum field theories confined in bounded domains is strongly dependent on the shape and structure of space boundaries. The most significant physical effect arises in the behaviour of the vacuum energy. The Casimir energy can be attractive or repulsive depending on the nature of the boundary. We calculate the vacuum energy for a massless scalar field confined between two homogeneous parallel plates with the most general type of boundary conditions depending on four parameters. The analysis provides a powerful method to identify which boundary conditions generate attractive or repulsive Casimir forces between the plates. In the interface between both regimes we find a very interesting family of boundary conditions which do not induce any type of Casimir force. We also show that the attractive regime holds far beyond identical boundary conditions for the two plates required by the Kenneth–Klich theorem and that the strongest attractive Casimir force appears for periodic boundary conditions whereas the strongest repulsive Casimir force corresponds to anti-periodic boundary conditions. Most of the analysed boundary conditions are new and some of them can be physically implemented with metamaterials.  相似文献   

4.
We study the Casimir force between two pistons under different boundary conditions inside an infinite cylinder with arbitrary cross section. It is found that the attractive or repulsive character of the Casimir force for a scalar field is determined only by the boundary condition along the longitudinal direction and is independent of the cross section, transverse boundary conditions and the mass of the field. Under symmetric Dirichlet-Dirichlet, Neumann-Neumann and periodic longitudinal boundary conditions the Casimir force is always attractive, but is repulsive under non-symmetric Dirichlet-Neumann and anti-periodic longitudinal boundary conditions. The Casimir force of the electromagnetic field in an ideal conductive piston is also investigated. This force is always attractive regardless of the shape of the cross section and the transverse boundary conditions.  相似文献   

5.
The Casimir force arises when a quantum field is confined between objects that apply boundary conditions to it. In a recent paper we used the two-spinor calculus to derive boundary conditions applicable to fields with arbitrary spin in the presence of perfectly reflecting surfaces. Here we use these general boundary conditions to investigate the Casimir force between two parallel perfectly reflecting plates for fields up to spin-2. We use the two-spinor calculus formalism to present a unified calculation of well-known results for spin-1/2 (Dirac) and spin-1 (Maxwell) fields. We then use our unified framework to derive new results for the spin-3/2 and spin-2 fields, which turn out to be the same as those for spin-1/2 and spin-1. This is part of a broader conclusion that there are only two different Casimir forces for perfectly reflecting plates—one associated with fermions and the other with bosons.  相似文献   

6.
S.C. Lim 《Annals of Physics》2009,324(8):1676-1964
We consider Casimir force acting on a three-dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy. It is shown that the divergent terms do not contribute to the Casimir force acting on the piston, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a - the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a4 when a→0+ and decays exponentially when a. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.  相似文献   

7.
We discuss the Casimir effect for massless scalar fields subject to the Dirichlet boundary conditions on the parallel plates at finite temperature in the presence of one fractal extra compactified dimension. We obtain the Casimir energy density with the help of the regularization of multiple zeta function with one arbitrary exponent and further the renormalized Casimir energy density involving the thermal corrections. It is found that when the temperature is sufficiently high, the sign of the Casimir energy remains negative no matter how great the scale dimension δ is within its allowed region. We derive and calculate the Casimir force between the parallel plates affected by the fractal additional compactified dimension and surrounding temperature. The stronger thermal influence leads the force to be stronger. The nature of the Casimir force keeps attractive.  相似文献   

8.
程红波 《理论物理通讯》2010,53(6):1125-1132
The Casimir effect of a piston for massless scalar fields which satisfy Dirichlet boundary conditions in the context of five-dimensional Randall- Sundrum models is studied. In these scenarios we derive and calculate the expression for the Casimir force on the piston. We also discuss the Casimir force in the limit that one outer plate is moved to the remote place to show that the nature of the reduced force between the parallel plates left. In the Randall~undrum model involving two branes the two plates attract each other when they locate very closely, but the reduced Casimir force turns to be repulsive as the plates separation is not extremely tiny, which is against the experimental phenomena, meaning that the RSI model can not be acceptable. In the case of one brane model the shape of the reduced Casimir force is similar to that of the standard two-parallel-system in the four-dimensional fiat spacetimes while the sign of force remains negative.  相似文献   

9.
Anushree Roy  U Mohideen 《Pramana》2001,56(2-3):239-243
Here we review our work on measurement of the Casimir force between a large aluminum coated a sphere and flat plate using an atomic force microscope. The average statistical precision is 1% of the force measured at the closest separation. We have also shown nontrival boundary dependence of the Casimir force.  相似文献   

10.
The Casimir effect for parallel plates satisfying the Dirichlet boundary condition in the context of effective QED coming from a six-dimensional Nielsen-Olesen vortex solution of the Abelian Higgs model with fermions coupled to gravity is studied at finite temperature. We find that the sign of the Casimir energy remains negative under the thermal influence. It is also shown that the Casimir force between plates will be weaker in the higher-temperature surroundings while keeps attractive. This Casimir effect involving the thermal influence is still inconsistent with the known experiments. We find that the thermal correction can not compensate or even reduce the modification from this kind of vortex model to make the Casimir force to be in less conflict with the measurements.  相似文献   

11.
We consider the finite temperature Casimir effect of a massive fermionic field confined between two parallel plates, with MIT bag boundary conditions on the plates. The background spacetime is Mp+1×Tq which has q dimensions compactified to a torus. On the compact dimensions, the field is assumed to satisfy periodicity boundary conditions with arbitrary phases. Both the high temperature and the low temperature expansions of the Casimir free energy and the force are derived explicitly. It is found that the Casimir force acting on the plates is always attractive at any temperature regardless of the boundary conditions assumed on the compact torus. The asymptotic limits of the Casimir force in the small plate separation limit are also obtained.  相似文献   

12.
A Casimir piston for massless scalar fields obeying Dirichlet boundary conditions in high-dimensional spacetimes within the frame of Kaluza–Klein theory is analyzed. We derive and calculate the exact expression for the Casimir force on the piston. We also compute the Casimir force in the limit that one outer plate is moved to the extremely distant place to show that the reduced force is associated with the properties of additional spatial dimensions. The more dimensionality the spacetime has, the stronger the extra-dimension influence is. The Casimir force for the piston in the model including a third plate under the background with extra compactified dimensions always keeps attractive. Further we find that when the limit is taken the Casimir force between one plate and the piston will change to be the same form as the corresponding force for the standard system consisting of two parallel plates in the four-dimensional spacetimes if the ratio of the plate-piston distance and extra dimensions size is large enough.  相似文献   

13.
The Casimir effect is highly dependent on the shape and structure of space boundaries. This dependence is encoded in the variation of vacuum energy with the different types of boundary conditions. We analyze from a global perspective the properties of the Casimir energy as a function on the largest space of the consistent boundary conditions MF\mathcal{M}_{F} for a massless scalar field confined between to homogeneous parallel plates. In particular, we analyze the analytic properties of this function and point out the existence of a third order phase transition at periodic boundary conditions. We also characterize the boundary conditions which give rise to attractive or repulsive Casimir forces. In the interface between both regimes we find a very interesting family of boundary conditions without Casimir effect, and fully characterize the boundary conditions which do not induce any type of Casimir force.  相似文献   

14.
The Casimir effect for massless scalar fields satisfying Dirichlet boundary conditions on the parallel plates in the presence of one fractal extra compactified dimension is analyzed. We obtain the Casimir energy density by means of the regularization of multiple zeta function with one arbitrary exponent. We find a limit on the scale dimension like $\delta>\frac{1}{2}$ to keep the negative sign of the renormalized Casimir energy which is the difference between the regularized energy for two parallel plates and the one with no plates. We derive and calculate the Casimir force relating to the influence from the fractal additional compactified dimension between the parallel plates. The larger scale dimension leads to the greater revision on the original Casimir force. The two kinds of curves of Casimir force in the case of integer-numbered extra compactified dimension or fractal one are not superposition, which means that the Casimir force show whether the dimensionality of additional compactified space is integer or fraction.  相似文献   

15.
The thermal Casimir effect in ideal metal rectangular boxes is considered using the method of zeta functional regularization. A renormalization procedure is suggested which provides the finite expression for the Casimir free energy in any restricted quantization volume. This expression satisfies the classical limit at high temperature and leads to zero thermal Casimir force for systems with infinite characteristic dimensions. In the case of two parallel ideal metal planes the results, as derived previously using thermal quantum field theory in Matsubara formulation and other methods, are reproduced starting from the expression obtained. It is shown that for rectangular boxes the temperature-dependent contribution to the electromagnetic Casimir force can be both positive and negative depending on side lengths. Numerical computations of the scalar and electromagnetic Casimir free energy and force are performed for cubes.  相似文献   

16.
In this article, we consider the finite temperature Casimir effect in Kaluza–Klein spacetime due the vacuum fluctuation of massless scalar field with Dirichlet boundary conditions. We consider the general case where the extra dimensions (internal space) can be any compact connected manifold or orbifold without boundaries. Using piston analysis, we show that the Casimir force is always attractive at any temperature, regardless of the geometry of the internal space. Moreover, the magnitude of the Casimir force increases as the size of the internal space increases and it reduces to the Casimir force in (3+1)(3+1)-dimensional Minkowski spacetime when the size of the internal space shrinks to zero. In the other extreme where the internal space is large, the Casimir force can increase beyond all bound. Asymptotic behaviors of the Casimir force in the low and high temperature regimes are derived and it is observed that the magnitude of the Casimir force grows linearly with temperature in the high temperature regime.  相似文献   

17.
Within the framework of the Drude dispersive model, we predict an unusual nonmonotonic temperature dependence of the Casimir force for thin metal films. For certain conditions, this force decreases with temperature due to the decrease of the metallic conductivity, whereas the force increases at high temperatures due to the increase of the thermal radiation pressure. We consider the attraction of a film to: either (i) a bulk ideal metal with a planar boundary, or (ii) a bulk metal sphere (lens). The experimental observation of the predicted decreasing temperature dependence of the Casimir force can put an end to the long-standing discussion on the role of the electron relaxation in the Casimir effect.  相似文献   

18.
《Nuclear Physics B》2005,704(3):552-582
We present the foundations of a new approach to the Casimir effect based on classical ray optics. We show that a very useful approximation to the Casimir force between arbitrarily shaped smooth conductors can be obtained from knowledge of the paths of light rays that originate at points between these bodies and close on themselves. Although an approximation, the optical method is exact for flat bodies, and is surprisingly accurate and versatile. In this paper we present a self-contained derivation of our approximation, discuss its range of validity and possible improvements, and work out three examples in detail. The results are in excellent agreement with recent precise numerical analysis for the experimentally interesting configuration of a sphere opposite an infinite plane.  相似文献   

19.
《Nuclear Physics B》2006,743(3):249-275
We recently proposed a new approach to the Casimir effect based on classical ray optics (the “optical approximation”). In this paper we show how to use it to calculate the local observables of the field theory. In particular, we study the energy–momentum tensor and the Casimir pressure. We work three examples in detail: parallel plates, the Casimir pendulum and a sphere opposite a plate. We also show how to calculate thermal corrections, proving that the high temperature ‘classical limit’ is indeed valid for any smooth geometry.  相似文献   

20.
We present a new approach to the Helmholtz spectrum for arbitrarily shaped boundaries and general boundary conditions. We derive the boundary induced change of the density of states in terms of the free Green's function from which we obtain nonperturbative results for the Casimir interaction between rigid surfaces. As an example, we compute the lateral electrodynamic force between two corrugated surfaces over a wide parameter range. Universal behavior, fixed only by the largest wavelength component of the surface shape, is identified at large surface separations, complementing known short distance expansions which we also reproduce with high precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号