首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用调制送气过程中观察到的冷脉冲传播,研究了在HL-2A装置欧姆放电条件下的电子热输运。从扰动输运方程出发,分析了电子热输运过程,利用在实验中获得的数据,进行了曲线拟合和数值计算,得到了在HL-2A装置欧姆放电条件下强场侧电子热输运系数的分布特征为χ=15-14(1-r2)2m2.s-1。  相似文献   

2.
This article investigates nonlinear self-focusing of an intense right hand circularly polarized Gaussian profile laser pulse in a weakly relativistic and ponderomotive regime inside a collisionless and unmagnetized warm quantum plasma. The nonlinear propagation equation for laser pulse in plasma has been derived. Then, the evolution differential equation for laser spot-size was obtained with considering the parabolic equation approach under the Wentzel-Kramers-Brillouin and paraxial ray approximations. This differential equation was solved numerically by fourth-order Runge-Kutta method. It is shown that our solution confirms the results of the self-focusing of the laser pulse in a weakly relativistic ponderomotive regime in cold quantum plasma in extreme conditions. Numerical results indicate that self-focusing of the laser pulse in the presence of relativistic and ponderomotive nonlinearity inside warm quantum plasma is improved in comparison with relativistic and ponderomotive cold quantum plasma.  相似文献   

3.
We report an experimental observation of slow light propagation in cold Rb atoms exhibiting cavity electromagnetically induced transparency (EIT). The steep slope of the atomic dispersion manifested by EIT reduces the light group velocity. The cavity filtering and feedback further contribute to the slowdown and delay of the light pulse propagation. A combination of the cavity and the EIT atomic system significantly improves the performance of the slow light propagation. A propagation time delay of approximately 200 ns was observed in the cavity and Rb EIT system, which is approximately 70 times greater than the time delay calculated for the light pulse propagation through the same Rb EIT system without the cavity.  相似文献   

4.
H Vosoughian  Z Riazi  H Afarideh  G Sarri 《中国物理 B》2017,26(2):25201-025201
The propagation of an intense laser pulse in an under-dense plasma induces a plasma wake that is suitable for the acceleration of electrons to relativistic energies. For an ultra-intense laser pulse which has a longitudinal size shorter than the plasma wavelength, λp, instead of a periodic plasma wave, a cavity free from cold plasma electrons, called a bubble, is formed behind the laser pulse. An intense charge separation electric field inside the moving bubble can capture the electrons at the base of the bubble and accelerate them with a narrow energy spread. In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The carrier–envelope phase(CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional(2D) particle-in-cell(PIC) simulations show that the frequency-chirped laser pulses are more effective in controlling the pulse depletion rate and consequently the effect of the CEP in the bubble regime. The results indicate that the utilization of a positively chirped laser pulse leads to an increase in rate of erosion of the leading edge of the pulse that rapidly results in the formation of a steep intensity gradient at the front of the pulse. A more unstable bubble structure, the self-injections in different positions, and high dark current are the results of using a positively chirped laser pulse. For a negatively chirped laser pulse, the pulse depletion process is compensated during the propagation of the pulse in plasma in such a way that results in a more stable bubble shape and therefore, a localized electron bunch is produced during the acceleration process. As a result, by the proper choice of chirping, one can tune the number of self-injected electrons, the size of accelerated bunch and its energy spectrum to the values required for practical applications.  相似文献   

5.
Sakakura M  Terazima M 《Optics letters》2004,29(13):1548-1550
The temporal evolution of refractive-index change produced by a tightly focused femtosecond (fs) laser pulse inside a soda-lime glass plate was investigated by use of a transient lens method with subpicosecond time resolution. An oscillating behavior of the light intensity in the central region of the probe beam was observed 0-1500 ps after irradiation of the plate. The oscillation was interpreted in terms of a rapid temperature increase and the ensuing propagation of the pressure wave. This study is to our knowledge the first real-time observation of refractive-index change inside a glass induced by a fs laser pulse.  相似文献   

6.
The propagation of a heat pulse into a perfect bcc crystal is studied by means of molecular dynamical calculations. We observe second sound waves associated with the heat pulse as well as with longitudinal and transverse elastic pulses. Our results explain a number of features observed in second sound experiments and suggest that second sound is a phenomenon of general occurrence.  相似文献   

7.
Kubota T  Awatsuji Y 《Optics letters》2002,27(10):815-817
We demonstrate the propagation of a light pulse undergoing refraction and total refraction inside a glass block as well as diffraction at a grating. Observation of a frameless, continuous motion picture of the light propagation is possible by recording of hologram with a picosecond pulsed laser. It is shown that the direction of the pulse changes as a result of refraction, the pulse's speed decreases inside a glass block, and the pulse travels a zigzag path by total refraction. The pulse fronts of the diffracted light propagating parallel to the grating surface are also demonstrated.  相似文献   

8.
We study the pulse propagation in a one-dimensional photonic crystal using the finite-difference time-domain method. The wave propagation inside the crystal is the result of superposition of forward and backward waves. We observed the superluminal phenomena and negative values of the velocity of the energy-density maximum. The energy velocities within the crystal never exceed the speed of light in vacuum. We hope that our study contributes to a further understanding of the superluminal phenomena.  相似文献   

9.
Propagation of a light pulse through a high-Q optical microcavity containing a few cold atoms (N<10) in its cavity mode is investigated experimentally. With less than ten cold rubidium atoms launched into an optical microcavity, up to 170 ns propagation lead time ("superluminal"), and 440 ns propagation delay time (subluminal) are observed. Comparison of the experimental data with numerical simulations as well as future experiments are discussed.  相似文献   

10.
HL-1装置热脉冲传播的傅里叶分析   总被引:1,自引:1,他引:0  
本文采用一种新提出的数值方法[1],即傅里叶变换分析法,研究了HL-1装置中用软X射线测量得到的锯齿振荡诱导的热脉冲传播行为。此方法不仅可以计算扰动调制的热传导系数,而且可以分析各次谐波的幅值和相位随频率及空间的演变,并与热脉冲峰值时间延迟分析法进行了比较,两者推算的热传导系数符合较好。所得结果和稳态能量平衡方法的推测值也为同一量级。在相似条件下,氘放电的热传导系数比氢小,即同位素效应能改善约束。大量运算结果表明,傅里叶分析法和峰值时间延迟分析法都可用于HL-1装置热脉冲传播的常规数值分析,并可应用于HL-1M的数据处理。  相似文献   

11.
The photoluminescence and nonequilibrium heat transfer observed in ZnSe single crystals grown by the free growth method on an oriented single-crystal ZnSe substrate in a hydrogen atmosphere were investigated. The nonequilibrium heat transfer (or propagation of nonequilibrium phonons) was studied by the heat pulse method. A region of local thermal equilibrium or “a hot phonon spot” was found to form in the material, and the threshold of its formation was determined. The constant of spontaneous anharmonic phonon decay in ZnSe was estimated from an analysis of the propagation of nonequilibrium phonons via comparison of the experimental responses with those calculated by the Monte Carlo method.  相似文献   

12.
The first electron temperature modulation experiments in plasmas characterized by strong and long-lasting electron and ion internal transport barriers (ITB) have been performed in JET using ion cyclotron resonance heating in mode conversion scheme. The ITB is shown to be a well localized narrow layer with low heat diffusivity, characterized by subcritical transport and loss of stiffness. In addition, results from cold pulse propagation experiments suggest a second order transition process for ITB formation.  相似文献   

13.
A comparative study has been performed between the finite difference time domain technique and the time domain beam propagation method (TD-BPM) while assessing the ultra short pulsed beam propagation inside dispersive power splitter. The dispersive GaAs material, used in the device, is modeled by Lorentzian dispersion relation that satisfies the refractive index of the material at a certain wavelength and shows a strong dispersion over a wide wavelength range. A smarter moving window technique is needed to be applied rather than at pulse’s group velocity for the TD-BPM, especially for bifurcated opto-electronic devices at the ultra short pulse.  相似文献   

14.
 采用校正的分子动力学方法研究了超短脉冲熔化单晶铜的动力学微观机制,建模时将熔化潜热的消耗及自由电子的热传导均考虑在内,使熔化过程的模拟更加真实。皮秒激光熔化单晶铜是一种过热熔化,可归因于液相在固相中的均匀形核。熔沿传播的速度高达5.8 nm/ps ,高于铜中声速。熔化发生在热约束区域内部,导致温度分布不太复杂,且卸载波对应力波的影响与应力约束区域相比较弱。  相似文献   

15.
Photoelastic and shadowgraph imaging techniques were used to visualize the propagation and evolution of stress waves, and the resultant transient stress fields in solids during shock wave lithotripsy. In parallel, theoretical analysis of the wavefront evolution inside the solids was performed using a ray-tracing method. Excellent agreement between the theoretical prediction and experimental results was observed. Both the sample size and geometry were found to have a significant influence on the wave evolution and associated stress field produced inside the solid. In particular, characteristic patterns of spalling damage (i.e., transverse and longitudinal crack formation) were observed using plaster-of-Paris cylindrical phantoms of rectangular and circular cross sections. It was found that the leading tensile pulse of the reflected longitudinal wave is responsible for the initiation of microcracks in regions inside the phantom where high tensile stresses are produced. In addition, the transmitted shear wave was found to play a critical role in facilitating the extension and propagation of the microcrack.  相似文献   

16.
Layers of reduced electron heat transport ("transport barriers") have been observed in the Rijnhuizen Tokamak Project when the plasma is dominantly heated by electron cyclotron heating (ECH). Experiments into the properties of the transport barriers are reported. Modulation of the ECH power was used to probe electron heat transport in the barriers by means of propagating electron temperature perturbations. The observed propagation shows that transport inside the barriers is dominated by heat convection. This convection is inward, i.e., up the temperature gradient.  相似文献   

17.
A Bragg waveguide is analyzed from the viewpoint of obtaining slow light. It is shown that, for this system, a complete mathematical analysis of the pulse propagation with allowance for leakage is possible. Calculations are presented that show that, in a TiO2/SiO2-based Bragg waveguide, one can obtain a group index of ∼1000 with a spatial decay length of ∼3 mm for a nanosecond-scale pulse. Distortion of the pulse due to the group index dispersion proves to be acceptable, in this case, for the pulse propagation length of about 3 mm, which corresponds to the fractional pulse delay ∼10. We also analyze the propagation of the light pulse in the Bragg waveguide with a quantum well inside and show possibility of obtaining a group index of ∼10000.  相似文献   

18.
We have studied heat-pulse propagation in single-crystalline sapphire using granular aluminum films for the heater and for the superconducting bolometer. The specimen surface carrying the bolometer was in direct contact with the liquid helium bath kept in the temperature range between 2.04 and 2.08 K. By varying the power during the heat pulse in the range between l mW and 2.8 W, we have observed the transition from purely ballistic pulse propagation at low power to diffusive propagation at higher power of the heat pulse. In the diffusive regime the phonon mean-free pathl has been experimentally determined and, using the Stefan-Boltzmann law, the variation ofl with the dominant phonon frequency has been found.  相似文献   

19.
A four-level N-type atomic medium is considered to study the effect of spontaneous generated coherence(SGC) and Kerr nonlinearity on light pulse propagation. A light pulse is propagating inside the medium where each atom follows four-level N-type atom-field configuration of rubidium(85Rb) atom. The atom-field interaction leads to electromagnetically induced transparency(EIT) process. The atom-field interaction is accompanied by normal dispersion and in the presence of SGC and Kerr nonlinearity the dispersion property of the proposed atomic medium is modified,which leads to enhancement of positive group index of the medium. The enhancement of positive group index then leads to slow group velocity inside the medium. A more slow group velocity is also investigated by incorporated the collective effect of SGC and Kerr nonlinearity. The control of group velocity inside a four-level N-type atomic medium via collective effect of SGC and Kerr nonlinearity is the major part of this work.  相似文献   

20.
刘丹  洪伟毅  郭旗 《物理学报》2016,65(1):14208-014208
采用时间转换法研究了周期量级飞秒脉冲电场在非线性克尔介质中的传输.由于周期量级飞秒脉冲电场的脉宽小于介质拉曼响应的特征时间,在传输过程中脉冲电场会发生剧烈的变形和分裂,并在频谱上观察到了强烈的拉曼感应频移和色散波.由于周期量级脉冲电场依赖于载波包络相位,发现在脉冲电场传输过程中,主脉冲电场和色散波电场的相位线性地依赖于初始脉冲的载波包络相位.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号