首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diffusive motion of silver ions in σ-AgI at 250°C has been studied by quasielastic cold neutron scattering. Spectra were taken in the range of wavevector transfer 0.5 < Q < 2.2Å?1 for elastic scattering. The quasielastic line shapes contain a narrow and a broad component. They are compared to model calculations allowing for the superposition of two kinds of motion on two different time scales, a local random motion and a translational motion of the jump-diffusion type. The model closely fits the data. The local random motion takes place on a time scale of the order of 10?12 s, with amplitudes of the order of 1 Å. It is probably caused by rapid fluctuations of the local potentials due to the diffusive motion of the other cations. The translational motion results in a mean displacement of the silver ion over a distance of the order of a lattice constant (5 Å) with a correlation time of the order of 10?11s. This correlation time is composed of a residence time and a time-of-flight, which are both of comparable magnitude.  相似文献   

2.
Quasielastic neutron scattering (QENS) has been applied to study the sodium mobility on nanosecond time scales in the perovskite fluoride cryolite, Na3AlF6, at high temperatures. Up to T = 1153 K the diffusion of Na ions is well described by a diffusion process of jumps between six and eight-fold coordinated sites. Above this temperature, where a step-like increase in the electrical conductivity occurs, the jump length increases, which indicates additional jumps over larger distances. The electrical conductivity derived from the self-diffusion coefficient via the Nernst–Einstein relation and the corresponding activation energy are in excellent agreement with the previous conductivity measurements. We conclude that the jump diffusion of sodium ions is the dominant mechanism for the electrical conductivity in cryolite at high temperatures up to T = 1153 K.  相似文献   

3.
Different local and global chain dynamics in a C(16)H(34) melt could be revealed by resolution resolved time-of-flight quasielastic neutron scattering and complementary molecular dynamics simulations. Thereby it has been demonstrated that the measured intermediate scattering functions can validate the simulated data on the pico- to nanosecond timescale. Remarkably the shape of the experimentally measured intermediate scattering functions can be reproduced excellently by molecular dynamics simulations. It was found that although the extracted apparent activation energy corresponds to the long-range diffusion value, the molecular dynamics in this time range are mainly due to local bond rotations and the rotation of entire molecules.  相似文献   

4.
Neutron scattering can in principle give information about magnetic fluctuations over the entire atomic space and time domain. The weakness of the neutron-matter interaction renders this information undistorted by the neutron probe, but at the same time puts intensity limitations on the method. A considerable number of studies on the magnetism of 3d metals have been performed at some of the larger reactor laboratories. In the regions of overlap the experimental results from the different laboratories are consistent, but the interpretations are along different lines. Among the controversial issues are itinerancy versus localization, the degree of order above Tc. In our talk we shall give an introduction to the neutron scattering method, including some of the sophisticated polarized beam methods. In the rest of the talk we shall review recent experimental results and some of the theoretical models used in their interpretation.  相似文献   

5.
6.
We have studied the collective short wavelength dynamics in deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine (DMPC) bilayers by inelastic neutron scattering. The corresponding dispersion relation variant Planck's over 2pi omega(Q) is presented for the gel and the fluid phase of this model system. The temperature dependence of the inelastic excitations indicates a phase coexistence between the two phases over a broad range and leads to a different assignment of excitations from that reported in a preceding inelastic x-ray scattering study [Phys. Rev. Lett. 86, 740 (2001)]]. As a consequence, we find that the minimum in the dispersion relation is actually deeper in the gel than in the fluid phase. Finally, we can clearly identify an additional nondispersive (optical) mode predicted by molecular dynamics simulations [Phys. Rev. Lett. 87, 238101 (2001)]].  相似文献   

7.
A model based on Gaussian statistics aimed at describing translational motion in confined media is presented. An example of application of this model to the study of water dynamics inside a ionic polymer membrane commonly used in fuel cells, the Nafion68, is shown.  相似文献   

8.
Using pulsed neutrons of 19.8 Å wavelength a quasielastic line broadening as low as 0.03 eV (FWHM) has been observed due to Na+ diffusion in the glass Na2O·2SiO2. From the linewidths a Na+ self-diffusion coefficient of 3.1·10–8 cm2/s at 420°C was obtained in excellent agreement with the diffusion coefficient determined for the same sample batch using22Na radioactive tracers. The experimental Q dependence of the quasielasic linewidths gives a hint for deviations from a purely random walk in an ionic glass.  相似文献   

9.
Synthetic and natural polymers have complex dynamic behavior with distinct motions taking place on a wide range of time and length scales. For poly(dimethyl siloxane) we show that, at temperatures above the melting point, the reorientation of the CH3 groups provides a non-negligible contribution to the incoherent dynamic structure factor. Analysis of the quasielastic neutron scattering data is carried out using a model function that includes fast rotational motion of the CH3 groups and local conformational transitions between isomeric states. By using this model, detailed comparison between experimental data and theoretical predictions at distances where deviations from the traditional Rouse model are expected becomes possible.  相似文献   

10.
Molecular dynamics (MD) simulations are used to investigate the response of a/2<111> screw dislocation in iron submitted to pure shear strain. The dislocation glides and remains in a (110) plane; the motion occurs exclusively through the nucleation and propagation of double kinks. The critical stress is calculated as a function of the temperature. A new method is developed and used to determine the activation energy of the double kink mechanism from MD simulations. It is shown that the differences between experimental and simulation conditions lead to a significant difference in activation energy. These differences are explained, and the method developed provides the link between MD and mesoscopic simulations.  相似文献   

11.
Using the method of quasielastic coherent neutron scattering by liquid lithium, the temperature dependence of self-diffusion coefficient is investigated and compared with analogous data extracted by the incoherent scattering method.  相似文献   

12.
The European Physical Journal E - Until recently, natural gas encountered in tight shales, which provided the source and seal of the gas, was considered uneconomical to produce. Although...  相似文献   

13.
The vibrational spectrum of hydrogen and the parameters of H jump motion in the rhombohedral Th(2)Zn(17)-type compound Ce(2)Fe(17)H(5) have been studied by means of inelastic and quasielastic neutron scattering. It is found that hydrogen atoms occupying interstitial Ce(2)Fe(2) sites participate in the fast localized jump motion over the hexagons formed by these tetrahedral sites. The H jump rate τ(-1) of this localized motion is found to change from 3.9 × 10(9) s(-1) at T = 140 K to 4.9 × 10(11) s(-1) at T = 350 K, and the temperature dependence of τ(-1) in the range 140-350 K is well described by the Arrhenius law with the activation energy of 103±3 meV. Our results suggest that the hydrogen jump rate in Th(2)Zn(17)-type compounds strongly increases with decreasing nearest-neighbor distance between the tetrahedral sites within the hexagons. Since each such hexagon in Ce(2)Fe(17)H(5) is populated by two hydrogen atoms, the jump motions of H atoms on the same hexagon should be correlated.  相似文献   

14.
Scattering functions and full widths at half maximum for quasielastic neutron scattering (QENS) are calculated for diffusion in systems of one-dimensional channels. The self-correlation function for diffusion in isotropically oriented channels is given and it is found that this function diverges at the origin. The calculations are carried out for both normal and single-file diffusion and the influence of the ballistic phase is investigated. It is found that the ballistic phase influences the scattering functions very strongly for large diffusion coefficients. QENS data from the literature are analyzed with respect to this influence. The influence of three different resolution functions (triangular, Gaussian, and Lorentzian) is considered.  相似文献   

15.
Molecular reorientational motion has been studied in a dilute solution of linear ‘tracer’ molecules in a solvent that exhibits liquid, plastic and crystalline phases. Molecular dynamics simulations have been used to extract reorientational correlation functions for both solvent and solute species as functions of temperature in all phases. The transition from the liquid to the plastic phase (upon cooling) results in less hindered tracer rotation, as evidenced by the more rapid decay of orientational correlation. These surprising dynamics are interpreted in terms of structural changes at freezing that lead to a less confining local tracer environment. The findings support a recent experimental result obtained from polarized Raman scattering on a solution of CS2 tracers in a cyclohexane host.  相似文献   

16.
17.
The quasielastic neutron scattering experiments on liquid sodium (at T = 378, 573, and 693 K) and sodiumhydrogen melt (T = 693 K, hydrogen concentration ~ 0.4 at %) were performed with the DIN-2PI time-of-flight spectrometer. The characteristics of the diffusion mobility for particles comprising the liquids studied are extracted from the experimental results and analyzed with the help of the phenomenological and “relaxing cage” models. The self-diffusion coefficient in liquid sodium obtained for all temperatures is in the agreement with the values known from literature. The diffusion mobility in pure sodium and in sodium-hydrogen melt were found to be coinciding; it leads to the conclusion that in our experimental conditions hydrogen exists and diffuses in melt in the form of hydride NaH.  相似文献   

18.
19.
The low frequency lattice dynamics and its relationship to the second order paraelectric-to-ferroelectric transition in Sn2P2S6 is studied. The dispersion branches of the acoustic and lowest lying optical phonons in the a*-c* plane have been obtained in the ferroelectric phase, for x-polarized phonons. Close to the phase transition a considerable softening is found for the lowest optical mode (Px), comparable to the behaviour observed in previous Raman investigations. As found previously in Sn2P2Se6, a strong coupling between the TO(Px) and TA(uxz) phonons is observed, although, apparently, not strong enough to lead to an incommensurate phase. The soft TO(Px) mode at the zone center is observed. The temperature dependence of its frequency and damping shows that the transition is not entirely displacive. At low temperatures an unusual apparent negative LO-TO splitting is observed which is shown to arise from the coupling of the x-polarized soft mode to the nearby z-polarized optical phonon. For comparison, the soft TO(Px) dispersion in the a*-b* plane is measured in both the paraelectric and ferroelectric phases. Consistent frequency changes and LO-TO splitting are observed, revealing a significant interaction between the TA(uyx) and LA(uxx) acoustics branches and the TO and LO soft optic branches, respectively. In contrast, the nearby y-polarized optic branch shows almost no temperature dependence. Finally, the influence of piezoelectric effects on the limiting acoustic slopes in the ferroelectric phase is discussed. Received: 11 May 1998 / Revised and Accepted: 15 June 1998  相似文献   

20.
The relaxation dynamics of pure acetonitrile isotopomers has been investigated in the temperature range 8 to 75 ° C. The overall response of the liquid is measured either recording directly the decay of the optical Kerr signal with heterodyne detection (OHD-OKE) and Fourier transforming the depolarized Rayleigh scattering spectra (DRS). The OHD-OKE signals show a decay that can be described by a bi-exponential law. At some temperatures, stressing to a maximum level the sensitivity of the OHD-OKE experimental set-up, a damped oscillation is observed on top of the fast decay component. The two techniques provide same results with a high level of reproducibility, as far as the slow component is concerned. This latter is described by an exponential law with the time constants ranging in the interval 2.0 to 0.85 ps in the light and approximately in the same interval in the deuterated molecule. The decays are, at all temperatures, well reproduced by the extended diffusion J-model. The fast component, better observed with the OHD-OKE experiments in a restricted temperature range, has time constants ranging from 550 to 350 fs. After the subtraction of the curve due to the slower decay component, the data have also been analyzed by Fourier transforming the fast part of the decay. The spectrum then consists of a broad (approximately 80 cm-1 wide) band centered at 50 cm-1. This band is interpreted as the manifestation of intermolecular vibrational motions. Received 21 July 2002 Published online 1st October 2002 RID="a" ID="a"e-mail: foggi@colonnello.lens.unifi.it  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号