首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a first-principles study of the effects of many-electron interactions on the optical properties of single-walled carbon nanotubes. Motivated by recent experiments, we have carried out ab initio calculations on the single-walled carbon nanotubes (3, 3), (5, 0) and (8, 0). The calculations are based on a many-body Greens function approach in which both the quasiparticle (single-particle) excitation spectrum and the optical (electron–hole excitation) spectrum are determined. We show that the optical spectrum of both the semiconducting and metallic nanotubes studied exhibits important excitonic effects due to their quasi-one-dimensional nature. Binding energies for excitonic states range from zero for the metallic (5, 0) tube to nearly 1 eV for the semiconducting (8, 0) tube. Moreover, the metallic (3, 3) tube possesses exciton states bound by nearly 100 meV. Our calculated spectra explain quantitatively the observed features found in the measured spectra. PACS 78.67.Ch; 71.35.Cc; 73.22.-f  相似文献   

2.
Considering the exciton effect, the linear optical spectra of semiconducting single-walled carbon nanotubes (SWNTs) under uniaxial strain are theoretically studied by using the standard formulae of Orr and Ward [Mol. Phys. 20(1971)513]. It is found that due to the wrapping effect existing in the semiconducting zigzag tubes, the excitation energies of the linear optical spectra show two different kinds of variations with increasing uniaxial strain, among which one decreases such as tube (11,0), and the other increases firstly and then decreases such as tube (10,0). These variations of the linear optical spectra are consistent with the changes of the exciton binding energies or the (quasi)continuum edge of these SWNTs calculated in our previous work, which can be used as a supplemented tool to detect the deformation degree of an SWNT under uniaxial strain.  相似文献   

3.
Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes separated by the density-gradient ultracentrifugation method have been measured in the wide energy region from 1 meV to 5 eV. In the high purity metallic nanotube sample, a strong and broad absorption band has been observed at 0.06 eV. This observation suggests that the optical properties of even high purity metallic nanotube bundles cannot be explained by the simple Drude conduction model. We discuss the origin of these absorption bands for metallic and semiconducting nanotube samples by considering the existence of a small energy gap in metallic nanotube bundles and plasmon resonance.  相似文献   

4.
Single-walled carbon nanotubes(SWCNTs),due to their outstanding electrical and optical properties,are expected to have extensive applications,such as in transparent conductive fims and ultra-small field-effect transistors(FETs).However,those applications can only be best realized with pure metallic or pure semiconducting SWCNTs.Hence,identifying and separating metallic from semiconducting SWCNTs in as-grown samples are crucial.In addition,knowledge of the type of an SWCNT is also important for f...  相似文献   

5.
The exciton states of semiconducting carbon nanotubes are calculated by a tight-binding model supplemented by Coulomb interactions under the combined effect of uniaxial strain and magnetic field. It is found that the excitation energies and absorption spectra of zigzag tubes(11,0) and(10,0) show opposite trends with the strain under the action of the magnetic field. For the(11,0) tube, the excitation energy decreases with the increasing uniaxial strain, with a splitting appearing in the absorption spectra. For the(10,0) tube, the variation trend firstly increases and then decreases, with a reversal point appearing in the absorption spectra. More interesting,at the reversal point the intensity of optical absorption is the largest because of the degeneracy of the two bands nearest to the Fermi Level, which is expected to be observed in the future experiment. The similar variation trend is also exhibited in the binding energy for the two kinds of semiconducting tubes.  相似文献   

6.
We report optical properties of the smallest single-walled carbon nanotubes (SWNTs) with a diameter of only 3 A. These ultrasmall SWNTs are fabricated in the elliptical nanochannels of an AlPO-11 (AEL) single crystal. Polarized and resonant Raman scattering unambiguously revealed that these 0.3 nm SWNTs are of (2,2) armchair symmetry. Interestingly, the (2,2) armchair tube has two metastable ground states corresponding to two slightly different lattice constants in the axial direction: one state is metallic and the other is semiconducting.  相似文献   

7.
Although Raman spectra reveal, as a signature of double‐walled carbon nanotubes (DWCNTs), two radial breathing mode (RBM) lines associated with the inner and outer tubes, the specification of their nature as metallic or semiconducting remains a topic for debate. Investigating the spectral range of the RBM lines, we present a new procedure of the indexing of the semiconducting or metallic nature of the inner and outer shell that forms the DWCNT. The procedure exploits the difference between the intensities of recorded anti‐Stokes Raman spectrum and the anti‐Stokes spectrum calculated by applying the Boltzmann formulae to the recorded Stokes spectrum. The results indicate that the two spectra do not coincide with what should happen in a normal Raman process, namely, that there are RBM lines of the same intensity in both spectra, as well as RBM lines of higher intensity that are observed in the calculated spectrum. This discrepancy results from the surface‐enhanced Raman scattering mechanism that operates differently on metallic or semiconducting nanotubes. In this context, the analysis of the RBM spectrum can reveal pairs of lines associated with the inner/outer shell structure of DWCNT, and when the intensities between the recorded and calculated spectra coincide, the nanotube is metallic; otherwise, the nanotube is semiconducting. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Surface‐enhanced Raman scattering studies were performed using nonresonant (514.5 nm) and resonant (676.4 nm) optical excitations on single‐walled carbon nanotubes thoroughly separated into semiconducting (pure 99%) and metallic (pure 98%) components. Regardless of the support (Au or Ag), the metallic nanotubes do not present an anomalous anti‐Stokes Raman emission. Regardless of whether an on‐resonant or off‐resonant optical excitation is used, only the semiconducting nanotubes produce an abnormal anti‐Stokes Raman emission that grows when increasing the excitation light intensity or temperature. The Raman studies under light polarized relative to the main nanotube axis demonstrate that only semiconducting nanotubes are sensitive toward changes in the polarization of the excitation light. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The electronic structure and phonon density of B(13)B(2) boron carbide calculated by Calandra et al (2004 Phys. Rev. B 69 224505) defines this compound as metallic, and the authors predict superconductivity with T(C)s up to 36.7 K. Their results are affected by the same deficiencies as former band structure calculations on boron carbides based on hypothetical crystal structures deviating significantly from the real ones. We present optical mid IR/far IR (MIR/FIR) spectra of boron carbide with compositions between B(4.3)C and B(10.37)C, evidencing semiconducting behaviour at least down to 30 K. There is no indication of superconductivity. The spectra yield new information on numerous localized gap states close to the valence band edge.  相似文献   

10.
《Current Applied Physics》2018,18(2):170-177
We report the electronic structure of Molybdenum disulfide (MoS2) ultrathin 2D films grown by pulsed laser deposition (PLD) on top of GaN/c-Al2O3 (0001) substrates annealed up to 550 °C in an ultrahigh vacuum. Our X-ray photoemission spectroscopy (XPS) study shows that the grown films are mixed phase character with semiconducting 2H and metallic 1T phases. After ultrahigh vacuum (UHV) annealing, the 1T/2H phase ratio is significantly modified and film-substrate bonding becomes the leading factor influencing variation of mixed phase compositions. The semiconducting phase is partially transformed to metallic phase by thermal annealing; suggesting that the metallic phase observed here may indeed have more stability compared to the semiconducting phase. The notable enhancement of the 1T/2H ratio induces significant changes in Ga 3d core level spectra taken from bare GaN and MoS2/GaN sample. The impact of S and/or Mo atoms on the Ga core level spectra is further pronounced with the thermal annealing of grown films. The analysis shows that an enhancement of 1T metallic phase with thermal annealing in MoS2 layers is manifested by the occurrence of new spectral component in the Ga 3d core level spectra with the formation of Ga-S adlayer interaction through the Ga bonding in defect assisted GaN structure.  相似文献   

11.
The thermal stability of initial and purified samples of single-walled carbon nanotubes prepared through gas-phase disproportionation of carbon monoxide CO in the presence of iron particles under high pressure (the HiPCO method) is investigated using optical absorption spectroscopy and thermogravimetry. An analysis of the optical absorption spectra demonstrates that thermal oxidation of the initial material proceeds rather rapidly and uniformly owing to the catalytic effect caused by the presence of iron particles in the sample. The destruction of the carbon nanotubes contained in the as-prepared and purified samples begins at temperatures of ~250 and ~300°C, respectively. It is shown that single-walled metallic nanotubes undergo faster oxidation as compared to the single-walled semiconducting nanotubes.  相似文献   

12.
From resonant Raman scattering on isolated nanotubes we obtained the optical transition energies, the radial breathing mode frequency, and the Raman intensity of both metallic and semiconducting tubes. We unambiguously assigned the chiral index (n(1),n(2)) of approximately 50 nanotubes based solely on a third-neighbor tight-binding Kataura plot and find omega(RBM)=(214.4+/-2) cm(-1) nm/d+(18.7+/-2) cm(-1). In contrast to luminescence experiments we observe all chiralities including zigzag tubes. The Raman intensities have a systematic chiral-angle dependence confirming recent ab initio calculations.  相似文献   

13.
Tunneling electrons from a scanning tunneling microscope were used to excite light emission from individual multiwalled carbon nanotubes adsorbed on a highly ordered pyrolytic graphite surface. In the integral photon-intensity map, spatially uniform emission in the visible region was observed along the identical multiwalled carbon nanotubes. The emission spectra for the individual nanotubes showed unique profiles which differed with each nanotube, and were classified into two types. Our results indicate that the light emission is due to not the localized electronic states at the tube ends or defects but radiative transitions of electrons between the one-dimensional van Hove singularities, indicating that the two types of spectra are attributed to metallic and semiconducting nanotubes.  相似文献   

14.
We report measurements of the valence band width in compressed Ge determined from x-ray emission spectra below the Ge K edge. The width of the valence band does not show any pressure dependence in the semiconducting diamond-type structure of Ge below 10 GPa. On the other hand, in the metallic beta-Sn phase above 10 GPa the valence band width increases under compression. Density-functional calculations show an increasing valence band width under compression both in the semiconducting phase (contrary to experiment) and in the metallic beta-Sn phase of Ge (in agreement with observed pressure-induced broadening). The pressure-independent valence band width in the semiconducting phase of Ge appears to require theoretical advances beyond the density-functional theory or the GW approximation.  相似文献   

15.
We theoretically studied the encapsulation of azafullerene (C59N) inside the single-walled carbon nanotubes (SWCNTs) from the first-principles. Adsorption energy is calculated, and the azafullerene affinities for the typical semiconducting and metallic nanotubes are investigated and compared with those of pure C60 fullerene. It has been found that the azafullerene as well as the fullerene affinity for the semiconducting nanotubes is stronger than that for the metallic ones, and the energy values and binding distances are typical for the physisorption. Our first-principles results indicate that the interaction between SWCNTs and azafullerenes is comparable with the nanotubes-C60 system. The charge analysis shows, however, that the charges have been transferred from the cage to the tube in the azafullerene peapods, while in the fullerene peapods the charges were found to be transferred from the tube to the fullerene nanocage. Furthermore, it was found that the interaction between the considered fullerenes and host nanotubes strongly depends on the tube diameters.  相似文献   

16.
Surface enhancement factors of at least 10(12) for the Raman scattering of single-walled carbon nanotubes in contact with fractal silver colloidal clusters result in measuring very narrow Raman bands corresponding to the homogeneous linewidth of the tangential C-C stretching mode in semiconducting nanotubes. Normal and surface-enhanced Stokes and anti-Stokes Raman spectra are discussed in the framework of selective resonant Raman contributions of semiconducting or metallic nanotubes to the Stokes or anti-Stokes spectra, respectively, of the population of vibrational levels due to the extremely strong surface-enhanced Raman process, and of phonon-phonon interactions.  相似文献   

17.
We studied the chemical state of semiconducting and metallic SmS thin films by X-ray photoelectron spectroscopy (XPS), which were fabricated using dual-target magnetron sputtering by controlling the power applied to both metal and chalcogenide targets. On the basis of the valence band spectra obtained, it was suggested that semiconducting SmS has the final state corresponding to the Sm2+(4f6) configuration below the Fermi level, and metallic SmS has mainly the Sm3+(4f5) final state and a virtual band state in the Sm 5d band, contributing to the delocalization of 4f electrons and the emergence of metallic conductivity (4f6d0-4f5d1). Thus, the spectra of our fabricated SmS thin films correspond to the band structure obtained from the dielectric property. This is the first work performed on the intrinsically prepared metallic SmS while the former works done for the sample transformed from semiconductor to metal phase by hard polishing.  相似文献   

18.
Recent experimental and theoretical works have demonstrated that quantum mechanical effects play an important role in materials design of some novel nano-plasmonic materials. In this work, electronic structure calculations are used to study these effects for the optical properties of metal nanostructures and small flakes of graphene. Their optical response is shown to depend on their exact atomic composition, and their similarities (size-dependent resonance frequency) and differences (metallic vs. semiconducting material) are discussed. The open-source computer code GPAW is used for the simulations, which can be done for systems of thousands of valence electrons. The calculations automatically include quantum effects such as tunneling, nonlocal response, and molecular orbital hybridization.  相似文献   

19.
We have studied 1D exciton relaxation dynamics in semiconducting single-walled carbon nanotubes (SWNTs) by femtosecond pump–probe experiments. The time evolution of change in transmittance ΔT/T induced by photo-excitation varies depending on the tube diameter. The decay time decreases with a decrease in the tube diameter. Pressure measurements have been conducted to explore the relaxation mechanism. The deformation potential estimated from the pressure dependence of photoluminescence spectra increases with decreasing tube diameter. This means that the exciton–phonon interaction becomes stronger in the smaller diameter tubes. The diameter dependences of decay time and deformation potential suggest that the exciton–phonon interaction plays an important role in exciton nonradiative relaxation process in semiconducting SWNTs.  相似文献   

20.
The size effects on the optical properties of vanadium dioxide nanoparticles in ordered arrays have been studied. Contrary to previous VO2 studies, we observe that the optical contrast between the semiconducting and metallic phases is dramatically enhanced in the visible region, presenting size-dependent optical resonances and size-dependent transition temperatures. The collective optical response as a function of temperature presents an enhanced scattering state during the evolving phase transition. The effects appear to arise because of the underlying VO2 mesoscale optical properties, the heterogeneous nucleation behind the phase transition, and the incoherent coupling between the nanoparticles undergoing an order-disorder-order transition. Calculations that support these interpretations are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号