首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
We study numerically the rheological properties of a slab of active gel close to the isotropic-nematic transition. The flow behavior shows a strong dependence on the sample size, boundary conditions, and on the bulk constitutive curve, which, on entering the nematic phase, acquires an activity-induced discontinuity at the origin. The precursor of this within the metastable isotropic phase for contractile systems (e.g., actomyosin gels) gives a viscosity divergence; its counterpart for extensile suspensions admits instead a shear-banded flow with zero apparent viscosity.  相似文献   

2.
Phase transition between nematic and isotropic liquid crystal is a very weak first order phase transition.We avoid to use the normal Landau-de Gennes‘s free energy that reduces a strong first order transition,and set up a data base of free energy calculated by means of Tao-Sheng-Lin‘s extended molecular field theory that can explain the experiments of the equilibrium properties of nematic liquid crystal very well.Then we use the free energy method of lattice Boltzmann developed by Oxford group to study the phase decomposition,pattern formation in the flow of the liquid crystal near transition temperature.  相似文献   

3.
We report that the properties of the isotropic to nematic liquid crystalline phase transition of F-actin depend critically on the average filament length. For average filament lengths longer than 2 microm, we confirm previous findings that the phase transition is continuous in both alignment and concentration. For average filament lengths shorter than 2 microm, we show for the first time a first order transition with a clear discontinuity in both alignment and concentration. Tactoidal droplets of coexisting isotropic and nematic phases, differing in concentration by approximately 30%, form over the course of hours and appear to settle into near equilibrium metastable states.  相似文献   

4.
We investigate theoretically some phase transitions in liquid crystals in the presence of a laser beam. We found, in non-absorbing nematics, a laser-induced one-way transition from a paranematic to a nematic phase. In absorbing nematics we found, in addition to this transition, a one-way transition from a nematic to a paranematic phase with increasing laser intensity. Further, we found a reentrant nematic or a reentrant paranematic via paranematic or nematic phase respectively. In the case of smectic A, laser absorption results in a coupling between the positional and orientational orders. As a result, the smectic A to nematic transition can change from second order to first order and the smectic C to smectic A transition can become first-order in the field of a laser.  相似文献   

5.
We present a model of the dynamics of director rotation in nematic gels under combined electro-mechanical loading. Focusing on a model specimen, we describe the critical voltages that must be exceeded to achieve director reorientation, and the blocking stresses that prevent alignment of the nematic director with the applied electric field. The corresponding phase diagram shows that the dynamic thresholds defined above are different from those predicted on the sole basis of energetics. Multistep loading programs are used to explore the energy landscape of our model specimen, showing the existence of multiple local minima under the same voltage and applied stress. This leads us to conclude that hysteresis should be expected in the electro-mechanical response of nematic gels.  相似文献   

6.
In a nematic gel we observe a low-energy buckling deformation arising from soft and semisoft elastic modes. We prepare the self-assembled gel by dissolving a coil-side-group liquid-crystalline polymer-coil copolymer in a nematic liquid crystal. The gel has long network strands and a precisely tailored structure, making it ideal for studying nematic rubber elasticity. Under polarized optical microscopy we observe a striped texture that forms when gels uniformly aligned at 35 degrees C are cooled to room temperature. We model the instability using the molecular theory of nematic rubber elasticity, and the theory correctly captures the change in pitch length with sample thickness and polymer concentration. This buckling instability is a clear example of a low-energy deformation that arises in materials where polymer network strains are coupled to the director orientation.  相似文献   

7.
We study exciton (EX) dynamics in single-walled carbon nanotubes (SWNTs) included in polymethylmethacrylate by two-color pump-probe experiments with unprecedented temporal resolution. In the semiconducting SWNTs, we resolve the intersubband energy relaxation from the EX2 to the EX1 transition and find time constants of about 40 fs. The observation of a photoinduced absorption band strictly correlated to the photobleaching of the EX1 transition supports the excitonic model for primary excitations in SWNTs. We also detect in the time domain coherent oscillations due to the radial breathing modes at approximately 250 cm(-1).  相似文献   

8.
We investigate the viscoelastic properties of an associating rigid rod network: aqueous suspensions of surfactant stabilized single wall carbon nanotubes (SWNTs). The SWNT suspensions exhibit a rigidity percolation transition with an onset of solidlike elasticity at a volume fraction of 0.0026; the percolation exponent is 2.3+/-0.1. At large strain, the solidlike samples show volume fraction dependent yielding. We develop a simple model to understand these rheological responses and show that the shear dependent stresses can be scaled onto a single master curve to obtain an internanotube interaction energy per bond approximately 40k(B)T. Our experimental observations suggest SWNTs in suspension form interconnected networks with bonds that freely rotate and resist stretching. Suspension elasticity originates from bonds between SWNTs rather than from the stiffness or stretching of individual SWNTs.  相似文献   

9.
The electronic properties of single-walled carbon nanotubes (SWNTs) are altered by intertube coupling whenever bundles are formed. These effects are examined experimentally by applying Rayleigh scattering spectroscopy to probe the optical transitions of given individual SWNTs in their isolated and bundled forms. The transition energies of SWNTs are observed to undergo redshifts of tens of meVs upon bundling with other SWNTs. These intertube coupling effects can be understood as arising from the mutual dielectric screening of SWNTs in a bundle.  相似文献   

10.
Anisotropic optical absorption properties of single-walled carbon nanotubes (SWNTs) are determined from a vertically aligned SWNT film for 0.5-6 eV. Absorption peaks at 4.5 and 5.25 eV are found to exhibit remarkable polarization dependence and have relevance to optical properties of graphite. A method for determining a nematic order parameter for an aligned SWNT film based on the collinear absorption peak at 4.5 eV is presented, followed by the determination of the optical absorption cross section.  相似文献   

11.
In this paper, we report that ruthenium is an active and efficient catalyst for growth of single-walled carbon nanotubes (SWNTs) by a chemical vapor deposition (CVD) process for the first time. High density random and horizontally superlong well-oriented SWNTs on substrate can be fabricated via CH4 or EtOH as carbon source under suitable conditions. Scanning and transition electron microscopy investigations, Raman spectroscopy and atomic force microscopy measurements show the tubular structure, the high crystallinity, and the properties of the grown nanotubes. The results show that the SWNTs from ruthenium have better structural uniformity with less defects and provides an alternative catalyst for SWNTs growth. The successful growth of SWNTs by Ru catalyst provides new experimental information for understanding the growth mechanism of SWNTs, which may be helpful for their controllable synthesis.  相似文献   

12.
In spite of the outstanding properties of single-walled carbon nanotubes (SWNTs), the coexistence of metallic and semiconducting SWNTs as a result of synthesis has hindered their electronic and photonic applications. We demonstrate a pump-probe microscopy method for fast, contact-free mapping of metallicity in individual SWNTs. We employ the phase of transient absorption as a contrast to discriminate metallic and semiconducting SWNTs. Furthermore, we have clarified the phase dependence on the pump or probe wavelengths and the energy structure of SWNTs. Our imaging method holds the potential of serving as a high-speed metallicity-mapping tool to assist the development of SWNT-based nanoelectronics.  相似文献   

13.
李世亮  刘曌玉  谷延红 《物理学报》2018,67(12):127401-127401
铁基超导体中普遍存在着反铁磁、超导和向列相,因此研究向列相的性质及其与反铁磁、超导的关系对于理解铁基超导体的低能物理及高温超导电性具有非常重要的作用.所谓向列相是指电子态自发破缺了晶格的面内四重旋转对称性而形成的有序态,从而导致样品的某些物理性质出现了两重的各向异性.我们通过自主研发的单轴压强装置,可以在低温下原位改变压强,测量电阻的变化,从而得到向列极化率.本文介绍了我们利用该装置在最近几年研究铁基超导体的向列相和向列涨落所取得的一些成果,包括详细研究了BaFe_(2-x)Ni_xAs_2体系中的向列量子临界点及其量子临界涨落,并提出了基于向列涨落强弱调节的铁基超导体统一相图.这些结果表明,向列相及其涨落与反铁磁和超导均有很强的耦合,对于理解铁基超导体中磁性和超导电性非常关键.  相似文献   

14.
Ozhan Kayacan 《Physica A》2007,383(2):391-400
In this study, the nematic-isotropic phase transition is investigated for a sample in the shape of a slab of thickness d, using nonextensive formalism. The interaction potential is written as the sum of the direct interaction of a given nematic molecule with the substrate and of its incomplete interaction with the other nematic molecules due to the presence of the limiting surface. In this framework, we show the effects of the nonextensivity on the nematic-isotropic transition at the nematic-wall interface. The generalized model can shed light on the properties of nematic liquid crystal confined in small-scale structures.  相似文献   

15.
By means of specific heat spectroscopy, we have studied the dynamics of nematic 8CB nucleated, in the presence of random disorder, as the temperature is lowered across the isotropic to nematic phase transition such that the crossover region of random dilution to random field regimes of disorder strength is explored. We show, in terms of frequency dependence, hysteretic behavior, and aging effects, that the out-of-equilibrium properties of the nematic nucleated in the random disorder regime are strongly reminiscent of the bulk material while the one grown in the random field regime shows a glassy behavior with aging leading to slower dynamics. The aging effect has been explained in terms of strain relaxation in analogy with observations in other soft glassy colloidal systems.  相似文献   

16.
In this paper, we discuss the equilibrium phases and collapse transitions of a lyotropic nematic gel immersed in an isotropic solvent. A nematic gel consists of a cross-linked polymer network with rod-like molecules embedded in it. Upon decreasing the quality of the solvent, we find that a lyotropic nematic gel undergoes a discontinuous volume change accompanied by an isotropic-nematic transition. We also present phase diagrams that these systems may exhibit. In particular, we show that coexistence of two isotropic phases, of two nematic phases, or of an isotropic and a nematic phase can occur. Received 15 February 2002 and Received in final form 14 June 2002  相似文献   

17.
We study the effect of the hydrostatic pressure on the phonons in single-walled carbon nanotubes (SWNTs) in a magnetic field. We calculate the magnetic moments of the phonons using a functional integral technique, and find that the phonons in SWNTs undergo a pressure-induced phase transition from the paramagnetic phase to the diamagnetic phase under hydrostatic pressure 2 GPa. We explain the mechanism of generating this phase transition.  相似文献   

18.
Based on experimental results, we obtain five types of single-walled carbon nanotube (SWNT) clusters with different chirality indices and diameters using density functional theory (DFT). We then obtain the corresponding SWNTs by using periodic boundary conditions. Studies of the stability and electronic properties show that the stability of the novel SWNTs is independent of the chirality index and relates only to the tube diameter; larger diameters correspond to more stable SWNTs. The electronic properties all show metallic characteristics independent of the chirality indices and tube diameters, thereby promoting the application of metallic-type SWNTs.  相似文献   

19.
We report on the effects of the coupling of nematic order and elasticity in anisotropic lyotropic gels consisting of large nematic domains of surfactant coated single wall carbon nanotubes embedded in a cross-linked N-isopropyl acrylamide polymer matrix. We observe the following striking features: (i) undulations and then cusping of the gel sidewalls, (ii) a nematic director field that evolves as the gel sidewalls deform, (iii) networks of surface cracks that are orthogonal to the nematic director field, and (iv) fissures at the sidewall cusps and associated topological defects that would not form in liquid nematics.  相似文献   

20.
We study the kinetic pathways for the isotropic-to-nematic transition in a fluid of colloidal hard rods. In order to follow the formation of the nematic phase, we develop a new cluster criterion that distinguishes nematic clusters from the isotropic phase. Applying this criterion in Monte Carlo simulations, we find spinodal decomposition as well as nucleation and growth depending on the supersaturation. We determine the height of the nucleation barrier and we study the shape and structure of the cluster. More specifically, we find ellipsoidal nematic clusters with an aspect ratio of about 1.7 and a homogeneous nematic director field. Our results are consistent with theoretical predictions on the shape and director field of nematic tactoids. Classical nucleation theory gives reasonable predictions for the height of the nucleation barrier and the critical nucleus size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号