首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The superconducting gap function of Sr2RuO4 was investigated by means of quasiparticle reflection and transmission at the normal conductor-superconductor interface of Sr2RuO4-Pt point contacts. We found two distinctly different types of dV/dI vs V spectra either with a double-minimum structure or with a zero-bias conductance anomaly. Both types of spectra are expected in the limit of high and low transparency, respectively, of the interface barrier between a normal metal and a spin-triplet superconductor. Together with the temperature dependence of the spectra this result strongly supports a spin-triplet superconducting order parameter for Sr2RuO4.  相似文献   

2.
The power-law temperature dependences of the specific heat, the nuclear relaxation rate, and the thermal conductivity suggest the presence of line nodes in the superconducting gap of Sr2RuO4. These recent experimental observations contradict the scenario of a nodeless (k(x)+ik(y))-type superconducting order parameter. We propose that interaction of superconducting order parameters on different sheets of the Fermi surface is a key to understanding the above discrepancy. A full gap exists in the active band, which drives the superconducting instability, while line nodes develop in passive bands by the interband proximity effect.  相似文献   

3.
We have investigated a gap structure in the spin-triplet superconductor Sr2RuO4 through the measurement of the 101Ru nuclear spin-lattice relaxation rate (101)(1/T1) down to 0.09 K at zero magnetic field. In the superconducting state, 1/T1 in a high-quality sample with T(c) approximately 1.5 K exhibits a sharp decrease without the coherence peak, followed by a T3 behavior down to 0.15 K. This result is in marked contrast to the behavior observed below approximately 0.4 K in samples with lower T(c), where T1T is a constant. This behavior is demonstrated to be not intrinsic. We conclude that the gap structure in Sr2RuO4 is significantly anisotropic, consistent with line-node-like models.  相似文献   

4.
The dependence of in-plane and interplane thermal conductivities of Sr2RuO4 on temperature, as well as magnetic field strength and orientation, is reported. We found no notable anisotropy in the thermal conductivity for the magnetic field rotation parallel to the conducting plane in the whole range of experimental temperatures and fields, except in the vicinity of the upper critical field H(c2), where the anisotropy of the H(c2) itself plays a dominant role. This finding imposes strong constraints on the possible models of superconductivity in Sr2RuO4 and supports the existence of a superconducting gap with a line of nodes running orthogonal to the Fermi surface cylinder.  相似文献   

5.
The unusual superconducting state in Sr(2)RuO(4) has long been viewed as being analogous to a superfluid state in liquid (3)He. Nevertheless, calculations based on this odd-parity state are presently unable to completely reconcile the properties of Sr(2)RuO(4). Using a self-consistent quantum many-body scheme that employs realistic parameters, we are able to model several signature properties of the normal and superconducting states of Sr(2)RuO(4). We find that the dominant component of the model superconducting state is of even parity and closely related to superconducting state for the high-T(c) cuprates although a smaller odd-parity component is induced by spin-orbit coupling. This mixed pairing state gives a more complete representation of the complex phenomena measured in Sr(2)RuO(4).  相似文献   

6.
To clarify the superconducting gap structure of the spin-triplet superconductor Sr2RuO4, the in-plane thermal conductivity has been measured as a function of relative orientations of the thermal flow, the crystal axes, and a magnetic field rotating within the 2D RuO2 planes. The in-plane variation of the thermal conductivity is incompatible with any model with line nodes vertical to the 2D planes and indicates the existence of horizontal nodes. These results place strong constraints on models that attempt to explain the mechanism of the triplet superconductivity.  相似文献   

7.
The polar Kerr effect in the spin-triplet superconductor Sr2RuO4 was measured with high precision using a Sagnac interferometer with a zero-area Sagnac loop. We observed nonzero Kerr rotations as big as 65 nanorad appearing below Tc in large domains. Our results imply a broken time-reversal symmetry state in the superconducting state of Sr2RuO4, similar to 3He-A.  相似文献   

8.
We identify an intrinsic Hall effect in multiband chiral superconductors in the absence of a magnetic field (i.e., an anomalous Hall effect). This effect arises from interband transitions involving time-reversal symmetry-breaking chiral Cooper pairs. We discuss the implications of this effect for the putative chiral p-wave superconductor, Sr2RuO4, and show that it can contribute significantly to Kerr rotation experiments. Since the magnitude of the effect depends on the structure of the order parameter across the bands, this result may be used to distinguish between different models proposed for the superconducting state of Sr2RuO4.  相似文献   

9.
We investigated the behavior of the spin-triplet superconductor Sr2RuO4 ( T(c) approximately 1.5 K) under the magnetic fields parallel to the quasi-two-dimensional plane. The upper critical field H(c2) exhibits a clear fourfold anisotropy of about 3% at 0.35 K. Furthermore, we detected an additional transition feature below H(c2) in both the ac susceptibility and the specific heat. These second-transition features as well as the pronounced in-plane H(c2) anisotropy disappear above 0.8 K or under intentional field misalignment of less than 1 degrees. Most of these characteristics are consistent with the predicted emergence of the second superconducting phase with a line-node gap.  相似文献   

10.
From Ru- and Cu-NMR studies, we present evidence for coexistence of superconductivity and ferromagnetism in a cuprate superconductor RuSr2YCu2O8 (RuY1212). The observation of a large enhancement of a radio-frequency field for the Ru-NMR signal at zero field reveals the existence of a ferromagnetic (FM) component in the ordered RuO2 plane below a Curie temperature of TM = 150 K. Just below the onset temperature of superconductivity T(onset)c = 45 K, a remarkable decrease of the nuclear spin-lattice relaxation rate 1/T1 was observed within the ordered RuO2 plane as well as the CuO2 plane, revealing that the superconducting gap coexists with the FM component in the RuO2 plane on a microscopic scale. In addition, from the observation of a sharp peak in 101(1/T1) at T(zero)c approximately 23 K where the resistivity becomes zero, we suggest that the motion of self-induced vortices originating from fluctuations of the FM component induces the resistivity between T(onset)c and T(zero)c in RuY1212.  相似文献   

11.
101Ru-Knight shift (101K) in the spin-triplet superconductor Sr2RuO4 was measured under magnetic fields parallel to the c axis (perpendicular to the RuO2 plane), which is the promising superconducting (SC) d-vector direction in a zero field. We succeeded in measuring K(c) in the field range from 200 to 1200 Oe and at temperatures down to 80 mK, using nuclear-quadrupole-resonance spectra. We found that (101)K(c) is invariant with respect to the field and temperature on passing through H(c2) and T(c) above 200 Oe. This indicates that the spin susceptibility along the c axis does not change in the SC state, at least, in the field greater than 200 Oe. The results imply that the SC d vector is in the RuO2 plane when the magnetic field is applied to the c axis.  相似文献   

12.
We show that the interplay between spin and charge fluctuations in Sr?RuO? leads unequivocally to triplet pairing which has a hidden quasi-one-dimensional character. The resulting superconducting state spontaneously breaks time-reversal symmetry and is of the form Δ ~(p(x)+ip(y))z(^) with sharp gap minima and a d vector that is only weakly pinned. The superconductor lacks robust chiral Majorana fermion modes along the boundary. The absence of topologically protected edge modes could explain the surprising absence of experimentally detectable edge currents in this system.  相似文献   

13.
In Sr2RuO4 the spin excitation spectrum is dominated by incommensurate fluctuations at q = (0.3 0.3q(z)), which arise from Fermi-surface nesting. We show that upon Ti substitution, known to suppress superconductivity, a short range magnetic order develops with a propagation vector (0.307 0.307 1). In Sr2Ru0.91Ti0.09O4, the ordered moment points along the c direction. This finding shows that superconducting Sr2RuO4 is extremely close to an incommensurate spin density wave instability.  相似文献   

14.
We report a study of the magnetization density in the mixed state of the unconventional superconductor Sr2RuO4. On entering the superconducting state we find no change in the magnitude or distribution of the induced moment for a magnetic field of 1 T applied within the Ru O2 planes. Our results are consistent with a spin-triplet Cooper pairing with spins lying in the basal plane. This is in contrast with similar experiments performed on conventional and high- T(c) superconductors.  相似文献   

15.
We calculate the Hall conductivity for a spin-triplet superconductor, using a generalized pairing symmetry dependent on an arbitrary phase phi. A promising candidate for such an order parameter is Sr2RuO4, whose superconducting order parameter symmetry is still subject to investigation. The value of this phase can be determined through Kerr rotation and dc Hall conductivity measurements. Our calculations impose significant constraints on phi.  相似文献   

16.
We performed high-resolution angle-resolved photoemission spectroscopy on La1.85Sr0.15CuO4 to study the nature of the single-particle excitation gap. We found that there is a well-defined superconducting coherence peak in the off-nodal region while it is strongly suppressed around the antinode. The momentum dependence of the single-particle excitation gap shows a striking deviation from the dx-y2--wave symmetry with anomalous enhancement around the antinode in both the superconducting and the pseudogap state. The observed close correlation between the superconducting coherence peak and the pseudogap suggests a substantial contribution of the pseudogap to the anomalous behavior of the gap in the superconducting state.  相似文献   

17.
We use angle-resolved photoemission spectroscopy to investigate the energy gap(s) in (Bi,Pb)2(Sr,La)2CuO6+delta. We find that the spectral gap has two components in the superconducting state: a superconducting gap and pseudogap. Differences in their momentum and temperature dependence suggest that they represent two separate energy scales. Spectra near the node reveal a sharp peak with a small gap below T(c) that closes at T(c). Near the antinode, spectra are broad with a large energy gap of approximately 40 meV above and below T(c). The latter spectral shape and gap magnitude are almost constant across T(c), indicating that the pseudogap state coexists with the superconducting state below T(c), and it dominates spectra around the antinode. We speculate that the pseudogap state competes with the superconductivity by diminishing spectral weight in antinodal regions, where the superconducting gap is largest.  相似文献   

18.
We have measured the temperature and field dependence of the resistivity of the unconventional superconductor Sr2RuO4 at pressures up to 3.3 GPa. Using the Shubnikov-de Haas effect, we find that the Fermi surface sheet believed to be primarily responsible for superconductivity becomes more two-dimensional with increasing pressure, a surprising result that is, however, consistent with a recent model of orbital-dependent superconductivity in this system. Many-body enhancements and the superconducting transition temperature all fall gradually with increasing pressure, contrary to previous suggestions of a ferromagnetic quantum critical point at approximately 3 GPa.  相似文献   

19.
We present intrinsic tunneling spectroscopy measurements on small Bi2Sr2CaCu2O8+x mesas. The tunnel conductance curves show both sharp peaks at the superconducting gap voltage and broad humps representing the c-axis pseudogap. The superconducting gap vanishes at Tc, while the pseudogap exists both above and below Tc. Our observation implies that the superconducting and pseudogaps represent different coexisting phenomena.  相似文献   

20.
We report measurements of the magnetic penetration depth in single crystals of Sr2RuO4 down to 0.04 K using a tunnel-diode based, self-inductive technique. We observe a power law temperature dependence below 0.8 K, with no sign of a second phase transition nor of a crossover predicted for a multiband superconductor. A power law dependence suggests that the gap function has nodes, inconsistent with candidate p-wave states. We argue that nonlocal effects, rather than impurity scattering, can explain the observed T2 dependence instead of the T-linear behavior expected for line nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号