首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanism of terahertz (THz) pulse generation in gases irradiated by ultrashort laser pulses is investigated theoretically. Quasi-static transverse currents produced by laser field ionization of gases and the longitudinal modulation in formed plasmas are responsible for the THz emission at the electron plasma frequency, as demonstrated by particle-in-cell simulations including field ionization. The THz field amplitude scaling with the laser amplitude within a large range is also discussed.  相似文献   

2.
Mechanism of terahertz (THz) pulse generation in gases irradiated by ultrashort laser pulses is investigated theoretically. Quasi-static transverse currents produced by laser field ionization of gases and the longitudinal modulation in formed plasmas are responsible for the THz emission at the electron plasma frequency, as demonstrated by particle-in-cell simulations including field ionization. The THz field amplitude scaling with the laser amplitude within a large range is also discussed.  相似文献   

3.
杜海伟  陈民  张凯云  盛政明  十张杰 《物理学报》2012,61(17):174205-174205
本文通过理论和数值模拟,研究少周期激光脉冲电离气体原子产生的离化电流 以及相应的THz波辐射.研究表明,少周期激光脉冲离化气体后能产生较大的离化电流, 因而可以产生较强的THz辐射.不同的少周期激光脉冲相位导致电离出的 电子初始速度和电离起始时刻不同,从而产生的离化电流有所不同, 辐射的THz波随激光脉冲的相位成周期性变化.该理论得到一维PIC数值模拟的验证. 对于给定的激光脉冲相位,离化电流和THz辐射振幅并没有随入射激光振幅的增加而单调增加, 而是存在一些极值点.与均匀分布气体相比,当气体分布具有一定梯度时, 辐射表现相似的规律,但频谱会发生一定的变化.  相似文献   

4.
为了满足脉冲式电子顺磁共振谱仪中电子自旋-核自旋双共振模块的需要,利用直接数字合成器设计并制作了射频信号源. 该部件产生的射频脉冲具备对频率、幅度和相位快速精确调制的能力,对原子核自旋有较强操控能力.  相似文献   

5.
张铠云  杜海伟  陈民  盛政明 《物理学报》2012,61(16):160701-160701
基于超短激光脉冲与气体作用通过光场离化电流产生太赫兹(THz)辐射的模型, 研究了用双色激光脉冲的方法产生强THz辐射的优化参数条件. 数值计算表明, 导致THz辐射产生的离化电流主要是由一阶电离过程产生的, 高阶离化对该电流产生的贡献很小. 通过调节基频光与倍频光的配比、相位差都能增大离化电流, 从而可以提高THz辐射振幅. 将激光波长拓展到中红外波段, 也有利于提高离化电流. 此外,改变作用气体的种类也能改变离化电流. 在激光和密度参数相等的情况下, 在氦气中可以产生高于氮气中2倍左右的离化电流.  相似文献   

6.
We present measurements of the electron ejection direction in the ionization of high (n=90) Rydberg states of rubidium subjected to few-cycle radio-frequency (RF) pulses. For weak pulses we find a strong asymmetry for even (cosine) pulses and no asymmetry for odd (sine) pulses. This asymmetry disappears for pulses longer than four RF cycles. For strong pulses, very large asymmetry is found for both sine and cosine pulses that persists up to eight RF cycles and is attributed to initial state depletion effects within a cycle.  相似文献   

7.
Accurate molecular imaging via high-order harmonic generation relies on comparing harmonic emission from a laser-irradiated molecule and an adequate reference system. However, an ideal reference atom with the same ionization properties as the molecule is not always available. We show that for suitably designed, very short laser pulses, a one-to-one mapping from high-order harmonic frequencies to electron momenta in above-threshold ionization exists. Comparing molecular and atomic momentum distributions then provides the electron recollision amplitude in the molecule for enhanced molecular imaging. The method retrieves the molecular recombination transition moments highly accurately, even with suboptimal reference atoms.  相似文献   

8.
The interaction of intense extreme ultraviolet femtosecond laser pulses (lambda = 32.8 nm) from the FLASH free electron laser (FEL) with clusters has been investigated by means of photoelectron spectroscopy and modeled by Monte Carlo simulations. For laser intensities up to 5x10(13) W/cm(2), we find that the cluster ionization process is a sequence of direct electron emission events in a developing Coulomb field. A nanoplasma is formed only at the highest investigated power densities where ionization is frustrated due to the deep cluster potential. In contrast with earlier studies in the IR and vacuum ultraviolet spectral regime, we find no evidence for electron emission from plasma heating processes.  相似文献   

9.
Properly prepared pulse sequences of microwave and radio frequency have been employed to investigate the effect of polarization transfer from the polarized photo excited triplet state of pentacene in p-terphenyl crystals to the surrounding protons in pulsed ENDOR experiments. The ENDOR signal, measured as the change of electron spin echo (ESE) amplitude, is affected by the mode of RF pulses. When B0 parallelx (the long molecular axis), the ESE amplitude of the high-field transition of the triplet state changes from the maximum positive to zero with a pi RF pulse, and to the maximum negative with a 2pi pulse, while that of the low-field transition changes from nearly zero to the maximum negative as the RF pulse width increases. The effect is attributed to the strong electron spin polarization produced in the creation of the photoexcited triplet state and the subsequent efficient electron- nuclear polarization transfer process.  相似文献   

10.
A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characteristics in the discharges is investigated numerically by the model. The results show that as the secondary electron emission coefficient increases,the cycle-averaged electric field has almost no change; the cycle-averaged electron temperature in the bulk plasma almost does not change, but it increases in the two sheath regions; the cycle-averaged ionization rate, electron density, electron current density, ion current density, and total current density all increase. Also, the cycle-averaged secondary electron fluxes on the surfaces of the electrodes increase as the secondary electron emission coefficient increases. The evolutions of the electron flux, the secondary electron flux and the ion flux on the powered electrode increase as the secondary electron emission coefficient increases. The cycle-averaged electron pressure heating, electron Ohmic heating, electron heating, and ion heating in the two sheath regions increase as the secondary electron emission coefficient increases. The cycle-averaged electron energy loss increases with increasing secondary electron emission coefficient.  相似文献   

11.
Using a classical ensemble method, we have investigated sequential double ionization (SDI) of Ar atoms driven by elliptical laser pulses. The results show that the ion momentum distribution of the Ar atoms depends strongly on the pulse duration. As the pulse duration increases, the ion momentum distribution changes from two bands to four bands and then to six bands and finally to an eight-band structure. Back analysis of double ionization trajectories shows that the variation of the band structure originates from pulse duration dependent multiple ionization bursts of the second electron. Our calculations indicate that the subcycle electron emission in the SDI could be more easily accessed by using elliptical laser pulses with a longer wavelength. Moreover, we show that there is good correspondence between the scaled radial momentum and the ionization time.  相似文献   

12.
左春彦  高飞  戴忠玲  王友年 《物理学报》2018,67(22):225201-225201
高功率微波在受控热核聚变加热、微波高梯度加速器、高功率雷达、定向能武器、超级干扰机及冲击雷达等方面有着重要的应用.本文针对高功率微波输出窗内侧氩气放电击穿过程,建立了二次电子倍增和气体电离的一维空间分布、三维速度分布(1D3V)模型,并开发了相应的PIC/MC程序代码.研究了气压、微波频率、微波振幅对放电击穿的影响.结果表明:在真空情况下,介质窗放电击穿只存在二次电子倍增过程;在低气压和稍高气压时,二次电子倍增和气体电离共存;在极高气压时,气体电离占主导.给出了不同气压下电子、离子的密度和静电场的空间分布.此外还观察到,在500 mTorr时,随着微波振幅或微波频率的变化,气体电离出现的时刻和电离产生的等离子体峰值位置有较大差异,尤其是当微波频率(GHz)在数值上是微波振幅(MV/m)的2倍时,气体电离出现的较早.  相似文献   

13.
二次发射微波电子枪的模拟计算及其特性分析   总被引:4,自引:2,他引:2       下载免费PDF全文
 采用URMEL-T程序进行了二次发射微波电子枪的腔内电磁计算和特性分析。同时利用URMEL-T得出的腔内轴向电场及自编程序,模拟电子在该高频场作用下的运动。计算表明二次发射微波电子枪确实具有相位选择性,进而探讨了腔形尺寸、射频电场强度对相位选择性和产生二次倍增的有关条件的影响,以及输出电子的能量稳定性。模拟结果表明,这类电子枪(MPG)可得到高电流密度(5303A/cm2)及短脉冲(3.15~10ps)的电子束。  相似文献   

14.
Combining optimal control theory with a new RF limiting step produces pulses with significantly reduced duration and improved performance for a given maximum RF amplitude compared to previous broadband excitation by optimized pulses (BEBOP). The resulting pulses tolerate variations in RF homogeneity relevant for standard high-resolution NMR probes. Design criteria were transformation of Iz-->Ix over resonance offsets of +/-20kHz and RF variability of +/-5%, with a pulse length of 500 micros and peak RF amplitude equal to 17.5 kHz. Simulations transform Iz to greater than 0.995 Ix, with phase deviations of the final magnetization less than 2 degrees, over ranges of resonance offset and RF variability that exceed the design targets. Experimental performance of the pulse is in excellent agreement with the simulations. Performance tradeoffs for yet shorter pulses or pulses with decreased digitization are also investigated.  相似文献   

15.
综合考虑发射电子的发射能量、发射角度及微波场的相位分布等因素,运用统计方法,研究了介质表面单边次级电子倍增过程中次级电子数目、瞬时直流场、渡越时间、微波场的沉积功率等次级电子倍增特征物理量随碰撞次数的变化过程,仿真分析了不同夹角、不同反射系数对次级电子倍增的影响。研究结果表明:当倾斜直流场一定时,微波场的反射系数越小,雪崩击穿的延迟时间越长,饱和状态下的次级电子数目越大;微波场一定时,当直流电场平行于介质板表面时,直流电场幅值越大,雪崩击穿的延迟时间越长,饱和状态下的次级电子数目越大,但当电场强度超过一定值时,次级电子倍增现象不再发生,当直流场垂直介质板表面,直流电场幅值越大,雪崩击穿的延迟时间越长,饱和状态下的次级电子数目越小,幅值超过一定值时,次级电子倍增现象同样不会发生。  相似文献   

16.
We find that the high harmonics have a power-law spectrum I(omega) approximately omega(-3.3+/-0.25) in a wide frequency domain starting at the ionization potential I(p) and down to the plateau beginning. Our spectrotemporal analysis of the emitted radiation displays clear bowlike structures in the (t,omega) plane. These "bows" correspond to Corkum's reencounters of the freed electron with the atom. We find that the bows are not filled and thus cannot be due to any bremsstrahlung. Rather, it is a resonant process that we call stimulated recombination (SR). It occurs when an electron with momentum p reencounters the incompletely ionized atom, and interferes with itself still remaining in the ground state. The SR leads to a highly efficient resonant emission at Planck's over 2pi omega=p(2)/2m+I(p) in the form of attosecond pulses. The SR relies on a low level of ionization and strongly benefits from the use of few-cycle laser pulses.  相似文献   

17.
We have investigated the generation of widely-separated bound pulses with a high power passively mode-locked Yb-doped double clad fiber laser. We report on the emission of bound pulses of 5 ps whose separation can exceed 180 ps. Pulses are further compressed extra-cavity to 140 fs, leading to pulse separations that can reach approximately 1300 pulse widths, while pulses remain bound. Scenarios leading to these regimes are detailed. RF analysis shows an important reduction of the amplitude noise of the laser when pulses bind together. Finally, we report on a new regime of multiple pulse emission of this fiber laser: stable co-emission of a single-pulse and a pair of bound pulses in the same cavity round trip. PACS 42.55.Wd; 42.65.Re  相似文献   

18.
We present the results of the detailed experimental study of multiple ionization of Ne and Ar by 25 and 7 fs laser pulses. Whereas in multiple ionization of Ar different mechanisms, involving field ionization steps and recollision-induced excitations, play a role, for Ne only one channel, where the highly correlated instantaneous emission of up to four electrons is triggered by a recollisional electron impact, is found to be important. Using few-cycle pulses we are able to suppress those processes that occur on time scales longer than one laser cycle.  相似文献   

19.
It is now well established that energetic electron emission, nonsequential ionization, and high harmonic generation, produced during the interaction of intense, femtosecond laser pulses with atoms (and atomic positive ions), can be explained by invoking rescattering of the active electron in the laser field, the so-called rescattering mechanism. In contrast for negative ions, the role of rescattering has not been established experimentally. By irradiating F- ions with ultrashort laser pulses, F+ ion yields as a function of intensity for both linearly and circularly polarized light have been measured. We find that, at intensities well below saturation for F+ production by sequential ionization, there is a small but significant enhancement in the yield for the case of linearly polarized light, providing the first clear experimental evidence for the existence of the rescattering mechanism in negative ions.  相似文献   

20.
The electrostatic simulations of the radio frequency (RF) heating mechanism, excitations, and ionization process of an electron plasma are carried out using a two‐dimensional (2D) particle‐in‐cell (PIC) code. RF drives with excitation frequencies of 1–15 MHz and amplitudes of 5 and 10 V were applied at two different axial positions, to the centre and to one end on the electrode stack of the ELTRAP device, at ultra‐high vacuum conditions. It is observed that the axial kinetic energy (eV) profile of the confined electrons increases with an increase of the RF excitation amplitudes, and densities from 5 × 107 to 1012 m?3 for all cases under consideration. The simulation results indicate that with continuous RF excitations, the electron heating in the beginning is higher at the trap wall of the device and extends towards the central region of the trap over a simulation time of up to 100 µs. These results on the electron heating are in good agreement with the experimental findings (optical diagnostics of ELTRAP). The heating effect is larger when the RF power is applied from the position close to one end of the trap in comparison to the central position. Monte–Carlo PIC simulations with hydrogen as a background gas are also performed to evaluate the ionization process at pressures of 10?8, 10?7, and 10?6 torr using the same electron plasma densities. The results show that at increasing pressures, the electron‐neutral collisions rate increases linearly with the background gas pressure. Increased collision frequency is obtained at higher RF drive amplitudes, which proportionally increases electron temperature, so that more ionization and secondary electrons are generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号