首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Boundary value methods (BVMs) for ordinary differential equations require the solution of non‐symmetric, large and sparse linear systems. In this paper, these systems are solved by using the generalized minimal residual (GMRES) method. A block‐circulant preconditioner with circulant blocks (BCCB preconditioner) is proposed to speed up the convergence rate of the GMRES method. The BCCB preconditioner is shown to be invertible when the BVM is Ak1,k2‐stable. The spectrum of the preconditioned matrix is clustered and therefore, the preconditioned GMRES method converges fast. Moreover, the operation cost in each iteration of the preconditioned GMRES method by using our BCCB preconditioner is less than that required by using block‐circulant preconditioners proposed earlier. In numerical experiments, we compare the number of iterations of various preconditioners. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Strang-type preconditioners for systems of LMF-based ODE codes   总被引:2,自引:0,他引:2  
We consider the solution of ordinary differential equations(ODEs) using boundary value methods. These methods require thesolution of one or more unsymmetric, large and sparse linearsystems. The GMRES method with the Strang-type block-circulantpreconditioner is proposed for solving these linear systems.We show that if an Ak1,k2 -stable boundary value method is usedfor an m-by-m system of ODEs, then our preconditioners are invertibleand all the eigenvalues of the preconditioned systems are 1except for at most 2m(k1 + k2) outliers. It follows that whenthe GMRES method is applied to solving the preconditioned systems,the method will converge in at most 2m(k1 + k2) + 1 iterations.Numerical results are given to illustrate the effectivenessof our methods. Received 8 October 1999. Accepted 30 May 2000.  相似文献   

3.
The finite difference discretization of the spatial fractional diffusion equations gives discretized linear systems whose coefficient matrices have a diagonal‐plus‐Toeplitz structure. For solving these diagonal‐plus‐Toeplitz linear systems, we construct a class of diagonal and Toeplitz splitting iteration methods and establish its unconditional convergence theory. In particular, we derive a sharp upper bound about its asymptotic convergence rate and deduct the optimal value of its iteration parameter. The diagonal and Toeplitz splitting iteration method naturally leads to a diagonal and circulant splitting preconditioner. Analysis shows that the eigenvalues of the corresponding preconditioned matrix are clustered around 1, especially when the discretization step‐size h is small. Numerical results exhibit that the diagonal and circulant splitting preconditioner can significantly improve the convergence properties of GMRES and BiCGSTAB, and these preconditioned Krylov subspace iteration methods outperform the conjugate gradient method preconditioned by the approximate inverse circulant‐plus‐diagonal preconditioner proposed recently by Ng and Pan (M.K. Ng and J.‐Y. Pan, SIAM J. Sci. Comput. 2010;32:1442‐1464). Moreover, unlike this preconditioned conjugate gradient method, the preconditioned GMRES and BiCGSTAB methods show h‐independent convergence behavior even for the spatial fractional diffusion equations of discontinuous or big‐jump coefficients.  相似文献   

4.
We describe a Krylov subspace technique, based on incomplete orthogonalization of the Krylov vectors, which can be considered as a truncated version of GMRES. Unlike GMRES(m), the restarted version of GMRES, the new method does not require restarting. Like GMRES, it does not break down. Numerical experiments show that DQGMRES(k) often performs as well as the restarted GMRES using a subspace of dimension m=2k. In addition, the algorithm is flexible to variable preconditioning, i.e., it can accommodate variations in the preconditioner at every step. In particular, this feature allows the use of any iterative solver as a right-preconditioner for DQGMRES(k). This inner-outer iterative combination often results in a robust approach for solving indefinite non-Hermitian linear systems.  相似文献   

5.
We propose a preconditioned variant of the modified HSS (MHSS) iteration method for solving a class of complex symmetric systems of linear equations. Under suitable conditions, we prove the convergence of the preconditioned MHSS (PMHSS) iteration method and discuss the spectral properties of the PMHSS-preconditioned matrix. Numerical implementations show that the resulting PMHSS preconditioner leads to fast convergence when it is used to precondition Krylov subspace iteration methods such as GMRES and its restarted variants. In particular, both the stationary PMHSS iteration and PMHSS-preconditioned GMRES show meshsize-independent and parameter-insensitive convergence behavior for the tested numerical examples.  相似文献   

6.
We consider the system of equations arising from finite difference discretization of a three-dimensional convection–diffusion model problem. This system is typically nonsymmetric. The GMRES method with the Strang block-circulant preconditioner is proposed for solving this linear system. We show that our preconditioners are invertible and study the spectra of the preconditioned matrices. Numerical results are reported to illustrate the effectiveness of our methods.  相似文献   

7.
We propose and analyze efficient preconditioners for solving systems of equations arising from the p-version for the finite element/boundary element coupling. The first preconditioner amounts to a block Jacobi method, whereas the second one is partly given by diagonal scaling. We use the generalized minimum residual method for the solution of the linear system. For our first preconditioner, the number of iterations of the GMRES necessary to obtain a given accuracy grows like log2 p, where p is the polynomial degree of the ansatz functions. The second preconditioner, which is more easily implemented, leads to a number of iterations that behave like p log3 p. Computational results are presented to support this theory. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 47–61, 1998  相似文献   

8.
We propose to precondition the GMRES method by using the incomplete Givens orthogonalization (IGO) method for the solution of large sparse linear least-squares problems. Theoretical analysis shows that the preconditioner satisfies the sufficient condition that can guarantee that the preconditioned GMRES method will never break down and always give the least-squares solution of the original problem. Numerical experiments further confirm that the new preconditioner is efficient. We also find that the IGO preconditioned BA-GMRES method is superior to the corresponding CGLS method for ill-conditioned and singular least-squares problems.  相似文献   

9.
Circulant-block preconditioners for solving ordinary differential equations   总被引:1,自引:0,他引:1  
Boundary value methods for solving ordinary differential equations require the solution of non-symmetric, large and sparse linear systems. In this paper, these systems are solved by using the generalized minimal residual (GMRES) method. A circulant-block preconditioner is proposed to speed up the convergence rate of the GMRES method. Theoretical and practical arguments are given to show that this preconditioner is more efficient than some other circulant-type preconditioners in some cases. A class of waveform relaxation methods is also proposed to solve the linear systems.  相似文献   

10.
For solving a singular linear system Ax=b by GMRES, it is shown in the literature that if A is range-symmetric, then GMRES converges safely to a solution. In this paper we consider preconditioned GMRES for solving a singular linear system, we construct preconditioners by so-called proper splittings, which can ensure that the coefficient matrix of the preconditioned system is range-symmetric.  相似文献   

11.
When solving large size systems of equations by preconditioned iterative solution methods, one normally uses a fixed preconditioner which may be defined by some eigenvalue information, such as in a Chebyshev iteration method. In many problems, however, it may be more effective to use variable preconditioners, in particular when the eigenvalue information is not available. In the present paper, a recursive way of constructing variable-step of, in general, nonlinear multilevel preconditioners for selfadjoint and coercive second-order elliptic problems, discretized by the finite element method is proposed. The preconditioner is constructed recursively from the coarsest to finer and finer levels. Each preconditioning step requires only block-diagonal solvers at all levels except at every k0, k0 ≥ 1 level where we perform a sufficient number ν, ν ≥ 1 of GCG-type variable-step iterations that involve the use again of a variable-step preconditioning for that level. It turns out that for any sufficiently large value of k0 and, asymptotically, for ν sufficiently large, but not too large, the method has both an optimal rate of convergence and an optimal order of computational complexity, both for two and three space dimensional problem domains. The method requires no parameter estimates and the convergence results do not depend on the regularity of the elliptic problem.  相似文献   

12.
We study the numerical solution of a block system T m,n x=b by preconditioned conjugate gradient methods where T m,n is an m×m block Toeplitz matrix with n×n Toeplitz blocks. These systems occur in a variety of applications, such as two-dimensional image processing and the discretization of two-dimensional partial differential equations. In this paper, we propose new preconditioners for block systems based on circulant preconditioners. From level-1 circulant preconditioner we construct our first preconditioner q 1(T m,n ) which is the sum of a block Toeplitz matrix with Toeplitz blocks and a sparse matrix with Toeplitz blocks. By setting selected entries of the inverse of level-2 circulant preconditioner to zero, we get our preconditioner q 2(T m,n ) which is a (band) block Toeplitz matrix with (band) Toeplitz blocks. Numerical results show that our preconditioners are more efficient than circulant preconditioners.  相似文献   

13.
From the literature it is known that the conjugate gradient method with domain decomposition preconditioners is one of the most efficient methods for solving systems of linear algebraic equations resulting from p‐version finite element discretizations of elliptic boundary value problems. One ingredient of such a preconditioner is a preconditioner related to the Dirichlet problems. In the case of Poisson's equation, we present a preconditioner for the Dirichlet problems which can be interpreted as the stiffness matrix Kh,k resulting from the h‐version finite element discretization of a special degenerated problem. We construct an AMLI preconditioner Ch,k for the matrix Kh,k and show that the condition number of C Kh,k is independent of the discretization parameter. This proof is based on the strengthened Cauchy inequality. The theoretical result is confirmed by numerical examples. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, our attention is concentrated on the GMRES method for the solution of the system (IT)x=b of linear algebraic equations with a nonsymmetric matrix. We perform m pre-iterations y l+1 =T yl +b before starting GMRES and put y m for the initial approximation in GMRES. We derive an upper estimate for the norm of the error vector in dependence on the mth powers of eigenvalues of the matrix T Further we study under what eigenvalues lay-out this upper estimate is the best one. The estimate shows and numerical experiments verify that it is advisable to perform pre-iterations before starting GMRES as they require fewer arithmetic operations than GMRES. Towards the end of the paper we present a numerical experiment for a system obtained by the finite difference approximation of convection-diffusion equations.  相似文献   

15.
16.
给出了解线性方程组的预条件Gauss-Seidel型方法,提出了选取合适的预条件因子.并讨论了对Z-矩阵应用这种方法的收敛性,给出了收敛最快时的系数取值.最后给出数值例子,说明选取合适的预条件因子应用Gauss-Seidel方法求解线性方程组是有效的.  相似文献   

17.
GMRES(k) is widely used for solving non-symmetric linear systems. However, it is inadequate either when it converges only for k close to the problem size or when numerical error in the modified Gram–Schmidt process used in the GMRES orthogonalization phase dramatically affects the algorithm performance. An adaptive version of GMRES(k) which tunes the restart value k based on criteria estimating the GMRES convergence rate for the given problem is proposed here. This adaptive GMRES(k) procedure outperforms standard GMRES(k), several other GMRES-like methods, and QMR on actual large scale sparse structural mechanics postbuckling and analog circuit simulation problems. There are some applications, such as homotopy methods for high Reynolds number viscous flows, solid mechanics postbuckling analysis, and analog circuit simulation, where very high accuracy in the linear system solutions is essential. In this context, the modified Gram–Schmidt process in GMRES, can fail causing the entire GMRES iteration to fail. It is shown that the adaptive GMRES(k) with the orthogonalization performed by Householder transformations succeeds whenever GMRES(k) with the orthogonalization performed by the modified Gram–Schmidt process fails, and the extra cost of computing Householder transformations is justified for these applications. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
jun-Feng Yin  Ken Hayami  Zhong-Zhi Bai 《PAMM》2007,7(1):2020151-2020152
We consider preconditioned Krylov subspace iteration methods, e.g., CG, LSQR and GMRES, for the solution of large sparse least-squares problems min ∥Axb2, with A ∈ R m×n, based on the Krylov subspaces Kk (BA, Br) and Kk (AB, r), respectively, where B ∈ R n×m is the preconditioning matrix. More concretely, we propose and implement a class of incomplete QR factorization preconditioners based on the Givens rotations and analyze in detail the efficiency and robustness of the correspondingly preconditioned Krylov subspace iteration methods. A number of numerical experiments are used to further examine their numerical behaviour. It is shown that for both overdetermined and underdetermined least-squares problems, the preconditioned GMRES methods are the best for large, sparse and ill-conditioned matrices in terms of both CPU time and iteration step. Also, comparisons with the diagonal scaling and the RIF preconditioners are given to show the superiority of the newly-proposed GMRES-type methods. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Recently Y. Saad proposed a flexible inner-outer preconditioned GMRES algorithm for nonsymmetric linear systems [4]. Following their ideas, we suggest an adaptive preconditioned CGS method, called CGS/GMRES (k), in which the preconditioner is constructed in the iteration step of CGS, by several steps of GMRES(k). Numerical experiments show that the residual of the outer iteration decreases rapidly. We also found the interesting residual behaviour of GMRES for the skewsymmetric linear system Ax = b, which gives a convergence result for restarted GMRES (k). For convenience, we discuss real systems.  相似文献   

20.
This paper presents a class of limited memory preconditioners (LMP) for solving linear systems of equations with symmetric indefinite matrices and multiple right‐hand sides. These preconditioners based on limited memory quasi‐Newton formulas require a small number k of linearly independent vectors and may be used to improve an existing first‐level preconditioner. The contributions of the paper are threefold. First, we derive a formula to characterize the spectrum of the preconditioned operator. A spectral analysis of the preconditioned matrix shows that the eigenvalues are all real and that the LMP class is able to cluster at least k eigenvalues at 1. Secondly, we show that the eigenvalues of the preconditioned matrix enjoy interlacing properties with respect to the eigenvalues of the original matrix provided that the k linearly independent vectors have been prior projected onto the invariant subspaces associated with the eigenvalues of the original matrix in the open right and left half‐plane, respectively. Third, we focus on theoretical properties of the Ritz‐LMP variant, where Ritz information is used to determine the k vectors. Finally, we illustrate the numerical behaviour of the Ritz limited memory preconditioners on realistic applications in structural mechanics that require the solution of sequences of large‐scale symmetric saddle‐point systems. Numerical experiments show the relevance of the proposed preconditioner leading to a significant decrease in terms of computational operations when solving such sequences of linear systems. A saving of up to 43% in terms of computational effort is obtained on one of these applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号