首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shapes of the self- and N2-broadened ν3CO2 fundamental vibration-rotation band in the microwindows (troughs between the lines) have been measured at various temperatures. Important deviations with respect to the superposition of Lorentzian profiles are observed. These deviations are interpreted in terms of line coupling, which redistributes the intensity in the whole band. In order to take into account this line coupling, two models are considered within the frame of the impact theory. The first model uses the strong-collision approximation to describe the rotational energy transferred by collisions. It leads to a simple analytical expression for the band profile. The second model is based on the exponential-gap law. These two models account well for the frequency dependence of the measured absorption in the microwindows and for the temperature dependence in the case of the N2-broadened CO2 band but not in the self-broadened case. The influence of the line-coupling rotational distribution, which differs significantly in the two models, is discussed. The possible role of the finite duration of collision in rotational energy transfer is examined.  相似文献   

2.
A detailed study of the gain dynamics of the pulsed, optically pumped 4.3 m CO2 laser is described. Small-signal gain coefficients as high as 14%/cm are measured in a 4.3 m amplifier using low-power pulses from a 4.3 m probe laser. The measurements are compared with a rate-equation model and good quantitative agreement is obtained. The model, which uses no adjustable parameters, is described in detail. Gain is studied as a function of optical pumping power, gas mixture, gas pressure and discharge excitation of the 4.3 m amplifier. Optimization of the gain is discussed.  相似文献   

3.
An approximate N2O spectroscopic database suitable for high temperature and medium resolution applications has been created in the 4.5 μm region. Intensities of 14N2 16O hot bands have been extrapolated pragmatically from the v3 band intensity and energies of vibrational levels have been computed by diagonalization of the effective Hamiltonian. The new parameters have been merged with the data available in the HITRAN database and in the recent experimental work of Toth. The entire list has then been used to generate individual line parameters. Pure N2O spectra have been recorded with a Fourier Transform spectrometer up to 900 K and with 1 cm−1 resolution. A good agreement between these spectra and line-by-line calculations using the new database is obtained while the use of HITRAN greatly underestimates absorption at high temperature.  相似文献   

4.
The decomposition of the broad absorption band at about 3·2 m in multicomponent aluminiumphosphate glasses was made using a computer Tesla 200. The results show that the band is composed of at least three bands. It is suggested that the two side bands are due to the stretching vibrations of the residual water molecules in the glass and only the middle band belongs to the protons.  相似文献   

5.
A 3 W average power CO2 laser oscillating in the range of 4.3m (10°1 to 10°O transition) is described. At the same time, the laser can emit 100 W in the sequence band 00°2 to 10°1 (10.6m). It is based on a commercial system with continuous-wave discharge of 12 m length and a slow gas flow. It operates in the Q-switched mode at pulse repetition rates up to 15 kHz. The pulse peak power is 1 kW and the pulse duration is 200 ns. The deviation from the theoretical efficiency limit has been decreased by a factor 2.5 in our device, due to saturation of the pumping (sequence band) radiation. We predict an improvement by another factor of 5 (possible average power of 10 to 20 W), if one avoids the absorption in the discharge-free zones.  相似文献   

6.
The refractivity of the CO2 gas is measured with an experimental error of 2% in the 10-m region, using 10.4-m band CO2 laser line. The frequency of the CO2 laser is swept through the Doppler profile of the laser line. The experiment is achieved using a 0.63-m He–Ne/10.6-m CO2-laser interferometer with a 2-m long vacuum cell. From the result, it is found that the Koch's formula also holds for the wavelengths in the 10-m region within an accuracy of 2%.  相似文献   

7.
We demonstrate a fourfold increase of the output energy of the gain-switched mid-IR Fe:ZnSe laser. Iron doping of the ZnSe polycrystalline samples was realized using a postgrowth thermal-diffusion method from the metal film. Gain-switched Er:Cr:YSGG (2.8 μm) laser pumped Fe:ZnSe lasing was studied in a Fabry-Perot cavity over a 236-300 K temperature range. The maximum output energy reached 4.7 mJ at 4.3 μm and 3.6 mJ at 4.37 μm at 236 K and 300 K and was limited only by available pump energy. The laser threshold was about 8 mJ and was practically unchanged over the studied temperature range. The laser slope efficiencies, measured with respect to the input pump energy, decreased from 19% to 16% with an increase of temperature from 236 to 300 K. The output radiation featured a Gaussian spatial profile with M(2) = 2.6.  相似文献   

8.
The D2O absorption spectrum recorded with a selective modulation Girard spectrometer in the region of 3690–4190 cm−1 (resolution ∼0.07 cm−1) has been analyzed. Based on the fitting of experimental data the spectroscopic parameters of the vibrational state (011) have been determined and the parameters of the vibrational states (110) and (030) have been estimated.  相似文献   

9.
Mid-infrared quantum-cascade laser (QCL) absorption spectroscopy of CO2 near 4.2 μm has been developed for measurement of temperature and concentration in hot gases. With stronger absorption line-strengths than transitions near 1.5, 2.0, and 2.7 μm used previously, the fundamental band (0001–0000) of CO2 near 4.2 μm provides greatly enhanced sensitivity and accuracy to sense CO2 in high-temperature gases. Line R(74) and line R(96) are chosen as optimum pair for sensitive temperature measurements due to their high-temperature sensitivity, equal signal-to-noise ratio (SNR), weak interference of H2O transitions, as well as relatively strong line-strengths in high temperature and weak absorption in room temperature. The high-resolution absorption spectrum of the far wings of the R-branch (R56–R100) in the fundamental vibrational band of CO2 is measured in a heated cell over the range 2,384–2,396 cm?1 at different temperatures from 700 to 1,200 K. Taking three factors into consideration, including SNR, concentration detectability, and uncertainty sensitivity, the absorption line R(74) is selected to calculate CO2 concentration. The tunable QCL absorption sensor is validated in mixtures of CO2 and N2 in a static cell for temperature range of 700–1,200 K, achieving an accuracy of ±6 K for temperature and ±5 % for concentration measurements.  相似文献   

10.
Direct absorption spectra of the 2ν 3 band of methane (CH4) from 6038 to 6050 cm~(-1) were studied at different low temperatures using a newly developed cryogenic cell in combination with a distributed feedback (DFB) diode laser.The cryogenic cell can operate at any stabilized temperature ranging from room temperature down to 100 K with temperature fluctuation less than ±1 K within 1 hour.In the present work,the CH 4 spectra in the range of 6038-6050 cm~(-1) were recorded at 296,266,248,223,198,and 176 K.The lower state energy E and the rotational assignment of the angular momentum J were determined by a "2-low-temperature spectra method" using the spectra recorded at 198 and 176 K.The results were compared with the data from the GOSAT and the recently reported results from Campargue and co-workers using two spectra measured at room temperature and 81 K.We demonstrated that the use of a 2-low-temperature spectra method permits one to complete the E and J values missed in the previous studies.  相似文献   

11.
At present, research into optical properties of bio-smoke materials mostly concentrates on single band or single germplasm. Herein, we measured the spectral reflectance of three eukaryotic bio-smoke materials and three prokaryotic bio-smoke materials in the waveband from 0.25 μm to 14μm. Based on the Kramers-Kroning algorithm, the complex refractive index m(λ) was calculated and the Fourier-transform infrared(FTIR) spectra of materials were analyzed. The results show that n(λ) of bio-smoke materials varies between 1.1-2, and n(λ) values in the visible light to near-infrared wavebands are significantly larger than those in other wavebands. The k(λ) of bio-smoke materials varies between 0-0.4.At 6-6.5 μm, k(λ) of prokaryotic materials is 3 times that of eukaryotic materials, which is caused by C=O stretching vibration of amide I and C-N stretching vibration of amide Ⅱ in proteins. At 2.5-3 μm and 9.75 μm, k(λ) values of eukaryotic bio-smoke materials are nearly 2 times that of prokaryotic ones. The absorption peak at 2.5-3 μm is mainly triggered by C-H stretching vibration in lipid and O-H stretching vibration in bound water. The absorption peak at 9.75 μm is mainly caused by symmetric stretching vibration of PO2-in nucleic acids.  相似文献   

12.
13.
杨则金  程新路  杨向东 《中国物理》2007,16(11):3319-3322
The integrated intensities of the collision-induced absorption of the V2 band of ^12CH4 perturbed by Ar have been calculated theoretically using the ab initio calculations, and the value of the quadrupole transition moment we obtained is (0/Q/V2) = 5.226ea^2.. The corresponding experimental value obtained from ^12 CH4-Ar spectra is /〈0/Q/V2)/ = 4.931ea^2. Ignoring vibration-rotation interaction and Coriolis interaction, and considering both the theoretical approximations and experimental uncertainties, the agreement can be regarded as good, thus confirming that the enhancement is due to the quadrupole collision-induced mechanism.[第一段]  相似文献   

14.
The effective nonlinear coefficient d eff of lithium niobate is determined to be 94 pm/V for a process that converts infrared light to 1.35 THz radiation. This value is inferred from the performance of a continuous-wave, singly-resonant optical parametric oscillator, in which the cavity-enhanced signal wave of a primary parametric process acts as a pump wave for a cascaded process, generating terahertz waves. To quantify the nonlinear coefficient, the coupled wave equations including absorption are evaluated. Furthermore, from our measurements we also determine the temperature dependence of the refractive index to be dn THz/dT=0.0013/K around 1.4 THz.  相似文献   

15.
A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′=1←v″=0) and (v′=2←v″=1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100–2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″=0, R(12) and v″=1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″=0, P(20) and v″=1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies.  相似文献   

16.
Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2←0 band of 12C16O from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high-purity (≥99.5% 12C-enriched) CO samples and CO diluted with dry air (research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298 K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman–Wallis coefficients), rather than determining individual line positions and intensities. Self- and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air- line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.  相似文献   

17.
Absolute linestrengths of selected lines in the υ2 band of HNO3 have been measured using a tunable diode laser spectrometer operating in a sweep integration mode. The direct measurement technique has been employed to obtain line intensities at 296 K for 22 isolated lines in the 1720–1725 cm-1 region. The reported linestrengths have estimated uncertainties of 4%, a significant portion of this uncertainty arising from spectral interference from hot band transitions. From these linestrength measurements, an integrated band intensity of 1375 cm-2-atm-1 at 296 K is inferred.  相似文献   

18.
In the 9387–9450 cm–1 region at temperatures of 300–1000 K, we have used an intracavity laser spectrometer based on a neodymium laser with threshold sensitivity to absorption 10–8 cm–1 and spectral resolution 0.035 cm–1 to study the absorption spectrum of D216O, H216O, and HD16O vapor. The high-temperature spectrum contains more than 450 absorption lines, 240 of which are assigned to the HDO isotopomer. The absorption lines of HDO were identified and belong to nine vibrational transitions: 3ν23, 2ν1 + 3ν2, 2ν1 + ν3, 4ν2 + ν3, 7ν2, ν1 + 2ν2 + ν3, ν1 + 5ν2, ν1 + 2ν2, and 3ν3 – ν2.  相似文献   

19.
The absorption spectra of water vapor in the 2.7 μm-band have been obtaine in an isothermal, vacuum-tight cell with a resolution of 0.8 cm-1. They are compared with a line-by-line calculation using AFGL data and the approximate temperature-dependence of the line-widths. Agreement is very satisfactory in some spectral regions and rather poor in others.  相似文献   

20.
《Infrared physics》1984,24(2-3):261-272
The IR spectrum of methyleneimine (CH2NH) has been observed in the gas phase with a resolution of 0.0048 cm−1 using the KPNO Solar Fourier transform spectrometer. The short-lived CH2NH was produced in a flow system by the pyrolysis of CH3NH2 at ca. 1000°C. The origin of the ν8 band was determined to be 1126.95 (6) cm−1. Preliminary calculations of the strong Coriolis interactions between the ν7, ν8 and ν9 bands have been made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号