首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coated microbubbles, unlike tissue are able to scatter sound subharmonically. Therefore, the subharmonic behavior of coated microbubbles can be used to enhance the contrast in ultrasound contrast imaging. Theoretically, a threshold amplitude of the driving pressure can be calculated above which subharmonic oscillations of microbubbles are initiated. Interestingly, earlier experimental studies on coated microbubbles demonstrated that the threshold for these bubbles is much lower than predicted by the traditional linear viscoelastic shell models. This paper presents an experimental study on the subharmonic behavior of differently sized individual phospholipid coated microbubbles. The radial subharmonic response of the microbubbles was recorded with the Brandaris ultra high-speed camera as a function of both the amplitude and the frequency of the driving pulse. Threshold pressures for subharmonic generation as low as 5 kPa were found near a driving frequency equal to twice the resonance frequency of the bubble. An explanation for this low threshold pressure is provided by the shell buckling model proposed by Marmottant et al. [J. Acoust. Soc. Am. 118, 3499-3505 (2005)]. It is shown that the change in the elasticity of the bubble shell as a function of bubble radius as proposed in this model, enhances the subharmonic behavior of the microbubbles.  相似文献   

2.
郭各朴  张春兵  屠娟  章东 《物理学报》2015,64(11):114301-114301
包膜黏弹特性显著影响微气泡超声造影剂的诊断及治疗应用效果. 本文结合原子力显微镜技术及声衰减特性测量提出了一种对微气泡造影剂包膜黏弹特性定量表征的新方法. 首先采用原子力显微镜技术进行机械特性分析得到包膜微气泡的有效硬度及体弹性模量; 然后测量声衰减特性, 基于微气泡动力学理论, 计算包膜微气泡的体黏度系数. 为验证方法的有效性, 实验制备了直径为1-5 μm的白蛋白包膜微气泡造影剂, 原子力显微镜测量的有效硬度和体弹性模量分别为0.149±0.012 N/m和8.31±0.667 MPa, 并与粒径无关. 声衰减特性测量和动力学理论拟合的包膜微气泡的体黏度系数为0.374±0.003 Pa·s. 该方法可推广至其他种类包膜微气泡的黏弹特性表征, 对超声造影剂的制备及其诊断和治疗应用有积极意义.  相似文献   

3.
Sonodynamic therapy involving the non-invasive and local generation of lethal reactive oxygen species (ROS) via ultrasound (US) with sonosensitizers has been proposed as an emerging tumor therapy strategy. However, such therapy is usually associated with inertial cavitation and unnecessary damage to healthy tissue because current sonosensitizers have insufficient sensitivity to US. Here, we report the use of a new proposed sonosensitizer, carbon dots (C-dots), to assemble microbubbles with a gas core (C-dots MBs). As the C-dots were directly integrated into the MB shell, they could effectively absorb the energy of inertial cavitation and transfer it to ROS. Our results revealed the appearance of 1O2, •OH, and H2O2 after US irradiation of C-dots MBs. In in vitro experiments, treatment with C-dots MBs plus US induced lipid peroxidation, elevation of intracellular ROS, and apoptosis in 32.5%, 45.3%, and 50.1% of cells respectively. In an animal solid tumor model, treatment with C-dots MBs plus US resulted in a 3-fold and 2.5-fold increase in the proportion of ROS-damaged cells and apoptotic cells, respectively, compared to C-dots MBs alone. These results will pave the way for the design of novel multifunctional sonosensitizers for SDT tumor therapy.  相似文献   

4.
滕旭东  郭霞生  屠娟  章东 《中国物理 B》2016,25(12):124308-124308
Modelling and biomedical applications of ultrasound contrast agent(UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including(i) the development of an all-in-one solution of characterizing coated bubble parameters based on the light scattering technique and flow cytometry;(ii) a novel bubble dynamic model that takes into consideration both nonlinear shell elasticity and viscosity to eliminate the dependences of bubble shell parameters on bubble size;(iii) the evaluation of UCA inertial cavitation threshold and its relationship with shell parameters; and(iv) the investigations of transfection efficiency and the reduction of cytotoxicity in gene delivery facilitated by UCAs excited by ultrasound exposures.  相似文献   

5.
Zhou XB  Qin H  Li J  Wang B  Wang CB  Liu YM  Jia XD  Shi N 《Ultrasonics》2011,51(3):270-274
Microbubbles (MBs) can augment the acoustic cavitation’ (US), thereby facilitating the thrombolysis of external ultrasound. But we observed re-thrombosis after successful thrombolysis by MBs and transcutaneous ultrasound in an endothelium injury model. This study was designed to explore whether platelet-targeted MBs can prevent the reformation of thrombi. Arterial injury was induced in canine femoral arteries with balloon, and the arteries were completely thrombotically occluded. The arteries were treated with intra-arterial MBs or platelet-targeted MBs (TMB) and transcutaneous low frequency ultrasound (LFUS) to achieve complete thrombolysis. The arterial flow was monitored with angiogram for 4 h following treatment. Results showed that both MBs and TMBs produced successful dissolution of clots in the presence of ultrasound. The re-occlusion began to occur 1 h after thrombolysis in MB/LFUS treatment, and 7 of 8 arteries were re-occluded within 3 h. Most of the arteries (7 of 8) in the TMB/LFUS group remained patent for 4 h following treatment. The flow tended to decrease after thrombolysis in MB/LFUS treatment. These results indicated that platelet-targeted microbubbles were beneficial in preventing re-thrombosis in vivo and microbubbles served as good carrier of thrombolytic and anticoagulation drugs.  相似文献   

6.
于洁  郭霞生  屠娟  章东 《物理学报》2015,64(9):94306-094306
随着生命科学及现代医学的发展, 一体化无创精准诊疗已经日益成为人们关注的焦点问题, 而关于超声造影剂微泡的非线性效应的相关机理、动力学建模及其在超声医学领域中的应用研究也得到了极大的推动. 本文对下列课题进行了总结和讨论, 包括: 1)基于Mie散射技术和流式细胞仪对造影剂微泡参数进行定征的一体化解决方案; 2)通过对微泡包膜的黏弹特性进行非线性修正, 构建新的包膜微泡动力学模型; 3)探索造影剂惯性空化阈值与其包膜参数之间的相关性; 以及4)研究超声联合造影剂微泡促进基因/药物转染效率并有效降低其生物毒性的相关机理.  相似文献   

7.
Light scattering was used to measure the radial pulsations of individual ultrasound contrast microbubbles subjected to pulsed ultrasound. Highly diluted Optison or Sonazoid microbubbles were injected into either a water bath or an aqueous solution containing small quantities of xanthan gum. Individual microbubbles were insonified by ultrasound pulses from either a commercial diagnostic ultrasound machine or a single element transducer. The instantaneous response curves of the microbubbles were measured. Linear and nonlinear microbubble oscillations were observed. Good agreement was obtained by fitting a bubble dynamics model to the data. The pulse-to-pulse evolution of individual microbubbles was investigated, the results of which suggest that the shell can be semipermeable, and possibly weaken with subsequent pulses. There is a high potential that light scattering can be used to optimize diagnostic ultrasound techniques, understand microbubble evolution, and obtain specific information about shell parameters.  相似文献   

8.
9.
Oscillating phospholipid-coated ultrasound contrast agent microbubbles display a so-called "compression-only" behavior, where it is observed that the bubbles compress efficiently while their expansion is suppressed. Here, a theoretical understanding of the source of this nonlinear behavior is provided through a weakly nonlinear analysis of the shell buckling model proposed by Marmottant et al. [J. Acoust. Soc. Am. 118, 3499-3505 (2005)]. It is shown that the radial dynamics of the bubble can be considered as a superposition of a linear response at the fundamental driving frequency and a second-order nonlinear low-frequency response that describes the negative offset of the mean bubble radius. The analytical solution deduced from the weakly nonlinear analysis shows that the compression-only behavior results from a rapid change of the shell elasticity with bubble radius. In addition, the radial dynamics of single phospholipid-coated microbubbles was recorded as a function of both the amplitude and the frequency of the driving pressure pulse. The comparison between the experimental data and the theory shows that the magnitude of compression-only behavior is mainly determined by the initial phospholipids concentration on the bubble surface, which slightly varies from bubble to bubble.  相似文献   

10.
High intensity pulsed ultrasound, interacting with microbubble contrast agents, is potentially useful for drug delivery, cancer treatment, and tissue ablation, among other applications. To establish the fundamental understanding on the interaction of a microbubble (in an infinite volume of water) with an ultrasound pressure field, a numerical study is performed using the boundary element method. The response of the bubble, in terms of its shape at different times, the maximum bubble radius obtained, the oscillation time, the jet velocity, and its translational movement, is studied. The effect of ultrasound intensity and initial bubble size is examined as well. One important outcome is the determination of the conditions under which a clear jet will be formed in a microbubble in its interaction with a specific sound wave. The high speed jet is crucial for the aforementioned intended applications.  相似文献   

11.
The dispersion relation for a granular bed with a small amount of fine bubbles is formulated and analyzed. It is assumed that the grain size is much larger than the bubble's radius and that their volume concentration is small. The study is motivated by the problem of acoustic diagnostics of fixed bed chemical reactors operating in multiphase flow regime.  相似文献   

12.
Zero-thickness interface models are developed to describe the encapsulation of microbubble contrast agents. Two different rheological models of the interface, Newtonian (viscous) and viscoelastic, with rheological parameters such as surface tension, surface dilatational viscosity, and surface dilatational elasticity are presented to characterize the encapsulation. The models are applied to characterize a widely used microbubble based ultrasound contrast agent. Attenuation of ultrasound passing through a solution of contrast agent is measured. The model parameters for the contrast agent are determined by matching the linearized model dynamics with measured attenuation data. The models are investigated for its ability to match with other experiments. Specifically, model predictions are compared with scattered fundamental and subharmonic responses. Experiments and model prediction results are discussed along with those obtained using an existing model [Church, J. Acoust. Soc. Am. 97, 1510 (1995) and Hoff et al., J. Acoust. Soc. Am. 107, 2272 (2000)] of contrast agents.  相似文献   

13.
Six models of contrast microbubbles are investigated to determine the excitation threshold for subharmonic generation. The models are applied to a commercial contrast agent; its characteristic parameters according to each model are determined using experimentally measured ultrasound attenuation. In contrast to the classical perturbative result, the minimum threshold for subharmonic generation is not always predicted at excitation with twice the resonance frequency; instead it occurs over a range of frequencies from resonance to twice the resonance frequency. The quantitative variation of the threshold with frequency depends on the model and the bubble radius. All models are transformed into a common interfacial rheological form, where the encapsulation is represented by two radius dependent surface properties-effective surface tension and surface dilatational viscosity. Variation of the effective surface tension with radius, specifically having an upper limit (resulting from strain softening or rupture of the encapsulation during expansion), plays a critical role. Without the upper limit, the predicted threshold is extremely large, especially near the resonance frequency. Having a lower limit on surface tension (e.g., zero surface tension in the buckled state) increases the threshold value at twice the resonance frequency, in some cases shifting the minimum threshold toward resonance.  相似文献   

14.
The acoustic backscatter of encapsulated gas-filled microbubbles immersed in a weak compressible liquid and irradiated by ultrasound fields of moderate to high pressure amplitudes is investigated theoretically. The problem is formulated by considering, for the viscoelastic shell of finite thickness, an isotropic hyperelastic neo-Hookean model for the elastic contribution in addition to a Newtonian viscous component. First and second harmonic scattering cross-sections have been evaluated and the quantitative influence of the driving pressure amplitude on the harmonic resonance frequencies for different initial equilibrium bubble sizes and for different encapsulating physical properties has been determined. Conditions for optimal second harmonic imaging have been also investigated and some regions in the parameters space where the second harmonic intensity is dominant over the fundamental have been identified. Results have been obtained for albumin, lipid and polymer encapsulating shells, respectively.  相似文献   

15.
马青玉  邱媛媛  黄蓓  章东  龚秀芬 《中国物理 B》2010,19(9):94302-094302
The difference-frequency (DF) ultrasound generated by using parametric effect promises to improve detection depth owing to its low attenuation, which is beneficial for deep tissue imaging. With ultrasound contrast agents infusion, the harmonic components scattered from the microbubbles, including DF, can be generated due to the nonlinear vibration. A theoretical study on the DF generation from microbubbles under the dual-frequency excitation is proposed in formula based on the solution of the RPNNP equation. The optimisation of the DF generation is discussed associated with the applied acoustic pressure, frequency, and the microbubble size. Experiments are performed to validate the theoretical predictions by using a dual-frequency signal to excite microbubbles. Both the numerical and experimental results demonstrate that the optimised DF ultrasound can be achieved as the difference frequency is close to the resonance frequency of the microbubble and improve the contrast-to-tissue ratio in imaging.  相似文献   

16.
Preoperative portal vein embolization (PVE) is employed clinically to avoid postoperative liver insufficiency. Animal models are usually used to study PVE in terms of mechanisms and pathophysiological changes. PVE is formerly monitored by conventional absorption contrast imaging (ACI) with iodine contrast agent. However, the side effects induced by iodine can give rise to animal damage and death. In this study, the feasibility of using phase contrast imaging (PCI) to show PVE using homemade CO2 microbubbles in living rats has been investigated. CO2 gas was first formed from the reaction between citric acid and sodium bicarbonate. The CO2 gas was then encapsulated by egg white to fabricate CO2 microbubbles. ACI and PCI of CO2 microbubbles were performed and compared in vitro. An additional increase in contrast was detected in PCI. PCI showed that CO2 microbubbles gradually dissolved over time, and the remaining CO2 microbubbles became larger. By PCI, the CO2 microbubbles were found to have certain stability, suggesting their potential use as embolic agents. CO2 microbubbles were injected into the main portal trunk to perform PVE in living rats. PCI exploited the differences in the refractive index and facilitated clear visualization of the PVE after the injection of CO2 microbubbles. Findings from this study suggest that homemade CO2 microbubbles‐based PCI is a novel modality for preclinical PVE research.  相似文献   

17.
Sub-harmonic response from ultrasound contrast agent microbubbles has been demonstrated to be an effective modality for noninvasive pressure measurement. In the present study, the dependence of ultra-harmonic response on the ambient overpressure was investigated by both experimental measurements and simulations. In the measurements, the microbubbles were exposed to Gaussian pulses with varied driving frequencies and pulse lengths, at an acoustic pressure of 0.3 MPa. The amplitudes of sub- and ultra-harmonic components were measured when the ambient overpressures varied from 0-25 kPa. At the driving frequency of 1.33 MHz, the ultra-harmonic energy decreased but the sub-harmonic energy increased with the increasing overpressure; while at the driving frequency of 4 MHz, both the sub- and ultra-harmonic components showed the same tendency that the corresponding energy decreased as the overpressure was increased. A 4-MHz Gaussian pulse with 64 cycles could provide an ultra-harmonic response with both good ambient pressure sensitivity and high linearity. Furthermore, the effects of shell parameters of a microbubble on the generation of ultra- and sub-harmonic responses were discussed based on simulations using Marmottant's model. This study suggests that the ultra-harmonic response from contrast microbubbles might be applicable for noninvasive pressure measurement.  相似文献   

18.
An adaptive controller design is proposed and simulated for parameter identification and oscillation control in microbubble systems. Lyapunov's direct method and a Lyapunov-like analysis are used to show stability and convergence of trajectory tracking and parameter adaptation. The method allows for the determination of microbubble contrast agent shell thickness or material parameters in a nondestructive manner.  相似文献   

19.
Few experimental and complementary theoretical studies have investigated high-frequency (>20 MHz) nonlinear responses from polymer-shelled ultrasound contrast agents. Three polymer agents with different shell properties were examined for their single-bubble backscatter when excited with a 40 MHz tone burst. Higher-order harmonic responses were observed for the three agents; however, their occurrence was at least partly due to nonlinear propagation. Only one of the agents (1.1 microm mean diameter) showed a subharmonic response for longer excitations (approximately 10-15 cycles) and midlevel pressure excitations ( 2.5 MPa). Theoretical calculations of the backscattered spectrum revealed behavior similar to the experimental results in specific parameter regimes.  相似文献   

20.
The cavitational effects of ultrasound (US) exposure induce transient pores on the cell membrane (sonoporation). Sonoporation have been applied in the field of cancer therapy by promoting delivery of extracellular molecules such as drugs and genes into cytoplasm. In addition, it is known that using US together with microbubbles (MB) elevates permeability of these agents. In this study, by applying the US-MB strategy for melanoma chemotherapy, we evaluated the antitumor effect of melphalan combined with US-MB on a melanoma cell line (C32) in vitro and in vivo. The in vitro cytotoxic effect of the melphalan with US-MB was greater than that of melphalan alone or melphalan in combination with US. In vivo experiments using xenografts, intratumoral injection of melphalan and MB with US exposure led to a greater degree of tumor regression than did the intratumoral injection of the melphalan alone or melphalan in combination with US. These results suggest that US-MB promotes the antitumor effect of melphalan by increasing delivery of molecules into cells and that this strategy may become an effective method of adjuvant therapy against malignant melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号