首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photophysical and photochemical properties of p-substitued 2-styryl-ethylbenzothiazolium iodides, possessing different electron-withdrawing or electron-donating groups are described. The dyes were prepared by the condensation of 3-ethyl-2-methylbenzothiazole salts with p-substituted benzaldehydes. The synthesis of suitable substrates is presented as well. We describe here the absorption, emission spectra and the luminescence quantum yield of hemicyanine dyes (SH) measured in 11 different organic solvents of varying polarity. Molecular structure of the synthesized dyes was established by (1)H NMR, electronic absorption and fluorescence spectrometry. The spectral data confirmed that all the compounds exist in E-configuration of their styryl residues. The planar molecular conformation is typical for the compounds with five-membered side aromatic moieties (for example benzothiazole). The compounds possessing N-alkyl substituent in phenyl ring, in contrast to the compounds with other substituents, exhibit low fluorescence quantum yield in THF solution. This indicates that for N-alkyl derivatives the non-radiative processes are much more effective than the radiative ones. The electronic absorption and fluorescence emission spectra of tested dyes demonstrate high sensitivity to the nature of substituent introduced into the aromatic ring.  相似文献   

2.
2-(2’-Hydroxyphenyl)benzazole (HBX) fluorophores are well-known excited-state intramolecular proton transfer (ESIPT) emitters largely studied for their synthetic versatility, photostability, strong solid-state fluorescence and ability to engineer dual emission, thus paving the way to applications as white emitters, ratiometric sensors, and cryptographic dyes. However, they are heavily quenched in solution, due to efficient non-radiative pathways taking place as a consequence of the proton transfer in the excited-state. In this contribution, the nature of the heteroring constitutive of these rigidified HBX dyes was modified and we demonstrate that this simple structural modification triggers major optical changes in terms of emission color, dual emission engineering, and importantly, fluorescent quantum yield. Investigation of the photophysical properties in solution and in the solid state of a series of ethynyl-TIPS extended HBX fluorophores, along with ab initio calculations demonstrate the very promising abilities of these dyes to act as bright dual-state emitters, in both solution (even in protic environments) and solid state.  相似文献   

3.
Structurally diverse near-infrared (NIR) absorbing polymethine dyes were prepared and their fluorescence lifetimes (FLT) were evaluated in relation to their structural features. Comparative FLT analysis based on the modification of methine chain length and heterocyclic system showed that indolium or benzo[e]indolium heptamethine dyes exhibited longer FLT than the benzo[c,d]indolium trimethine dye. Modification of heterocyclic system alone with an intact chain length showed that indolium-based heptamethine dyes showed approximately 30% longer FLT than the benzo[e]indolium-based dyes. In general, the FLT of polymethine dyes increased from polar to non-polar solvents. In addition, correlation study between the theoretical and the experimental FLT for indocyanine green (ICG) suggests that the lack of structural rigidity for these cyanine dyes is primarily responsible for the loss of the excited state energy via non-radiative pathway.  相似文献   

4.
Herein, three environment-sensitive (solvatochromic) fluorescent dyes presenting a strong electron acceptor 3-methoxychromone unit and varied electron donor 2-aryl were developed. All three dyes showed remarkable polarity-dependent shifts of the emission maximum, which increase with extension of the dye conjugation. For the 3-methoxychromone bearing a 7-(diethylamino)-9,9-dimethylfluoren-2-yl donor group the difference between the excited and the ground state dipole moments, estimated from the Lippert-Mataga expression, reached 20 D, which is among the largest reported for neutral dipolar fluorophores. Moreover, the new dyes are characterized by significant two-photon absorption cross-section (up to 450 GM) and large fluorescence quantum yields. The strong decrease in the fluorescence quantum yields of the dyes in polar protic solvents was observed together with the increase in the non-radiative deactivation rates, which can originate from twisted intramolecular charge transfer and intermolecular proton transfer phenomena. In comparison to the parent 3-hydroxychromone derivatives, the new dyes presented significantly improved photostability, which confirms that photodegradation of 3-hydroxychromones occurs from a product of the excited-state intramolecular proton transfer (phototautomer). Finally, an application of the new dyes for probing local binding site polarity of serum albumin was shown. This new class of fluorescent dyes may serve as attractive building blocks for future molecular sensors utilizing environment-sensitive fluorophores.  相似文献   

5.
To broaden the application of aggregation-induced emission (AIE) luminogens (AIEgens), the design of novel small-molecular dyes that exhibit high fluorescence quantum yield (Φfl) in the solid state is required. Considering that the mechanism of AIE can be rationalized based on steric avoidance of non-radiative decay pathways, a series of bridged stilbenes was designed, and their non-radiative decay pathways were investigated theoretically. Bridged stilbenes with short alkyl chains exhibited a strong fluorescence emission in solution and in the solid state, while bridged stilbenes with long alkyl chains exhibited AIE. Based on this theoretical prediction, we developed the bridged stilbenes BPST[7] and DPB[7], which demonstrate excellent AIE behavior.  相似文献   

6.
beta,meso,beta-Fused porphyrin oligomers have many attractive photophysical features such as strong absorption in the near-IR at wavelengths greater than 1000 nm, and high two-photon cross sections. However their ultrafast S(1)-S(0) deactivation (k(d) > 10(11) s(-1)) limits potential applications. We have synthesised a deuterated fused porphyrin dimer to test whether deuteration influences the rate of non-radiative deactivation. An efficient synthetic strategy was developed, starting with deuteration of dipyrromethane. Deuteration of the zinc porphyrin dimer does not affect its fluorescence quantum yield in CD(2)Cl(2)(Phi(fD)/Phi(fH)= 1.00 +/- 0.05). This implies that the ultrafast non-radiative deactivation is not simply a consequence of the small S(1)-S(0) energy gap. Comparison with other conjugated porphyrin oligomers confirms that the deactivation rate in the edge-fused oligomers is faster than would be expected from the energy gap law. This result indicates that it should be possible to create near-IR dyes with similar S(1)-S(0) energy gaps to the beta,meso,beta-fused porphyrin oligomers but with slower rates of S(1)-S(0) decay.  相似文献   

7.
In this paper, ceramic plates were used as a support of TiO2 nanoparticles for photocatalytic decolorization of a mixture of three dyes. The three textile dyes (C.I. Basic Red 46, C.I. Basic Blue 3 and Malachite Green) were quantified simultaneously during the photocatalytic degradation process. The partial least squares modeling was successfully applied for the multivariate calibration of the spectrophotometric data. Also, the central composite design has been applied to the optimization of photocatalytic decolorization of the dye solution containing three dyes using an immobilized UV/TiO2 process. The optimum initial concentration of three dyes, reaction time, and UV light intensity were found to be 5 mg/L, 240 min, and 47.2 W/m2, respectively. The chronic phytotoxicity of mixture of dyes was evaluated using aquatic species Spirodela polyrhiza (S. polyrhiza) prior to and after photocatalysis. The phytotoxicity results revealed that the photocatalysis process could effectively reduce the phytotoxicity of the dyes from their aqueous solutions.  相似文献   

8.
The intrinsic non-radiative decay (internal conversion) from the triplet excited state in phosphorescent dyes can be described by a multi-phonon emission process. Since non-radiative decay of triplet excitons can be a significant process in organic light-emitting diodes, a detailed understanding of this decay mechanism is important if the overall device efficiency is to be controlled. We compare a deuterated Pt(II)-containing phenylene ethynylene with its non-deuterated counterpart in order to investigate which phonon modes control to the non-radiative decay path. We observe that deuteration does not decrease the non-radiative decay rate. A Franck-Condon analysis of the phosphorescence spectra shows that the electronic excitation is coupled strongly to the breathing mode of the phenyl ring and the C≡C carbon stretching modes, while high-energy C-H or C-D stretching modes play an insignificant role. We, therefore, associate the internal conversion process with the carbon-carbon stretching vibrations.  相似文献   

9.
A novel family of pyrazolo[1,5-a]pyrimidine-dioxaborinine (PP-DB) hybrid dyes was synthesized by the direct construction of the dioxaborinine (DB) fragment on the pyrazolo[1,5-a]pyrimidine (PP) ring, which implies the formation of four new bonds in a one-pot manner. The dyes’ optical properties were investigated and compared with the starting pyrazolo[1,5-a]pyrimidines; a study evidencing large fluorescence quantum yields in products (φf up to 69 %) due to an intramolecular charge transfer (ICT) process from the PP core to a ring of DB (PP→DB) that is absent in precursors (φf=0.03–0.30). Time-dependent density functional theory (TD-DFT) calculations confirmed the fluorescence process involved in the novel dyes, where their ICT limits the non-radiative process due to the restricted rotation in the D−A system. The present work provides insight into how phenyl and DB ring incorporation impact the optical properties of this new group of hybrids dyes based on PP-DB.  相似文献   

10.
The solubilities of disperse dyes and their mixture in supercritical carbon dioxide are important to the fundamental research and development of supercritical fluid dyeing (SFD). The solubilities of Disperse Red 73, Disperse Yellow 119 and their mixture in supercritical carbon dioxide were measured in the temperature range from 343 to 383 K and pressures from 12 to 28 MPa by a static-recirculation method. The results show that over the entire range of experimental conditions in the binary (Disperse Red 73 + CO2 and Disperse Yellow 119 + CO2) and ternary (Disperse Red 73 + Disperse Yellow 119 + CO2) systems, the solubilities increased with increasing pressure and temperature and were clearly affected by the molecular polarity of the dyes. A co-solvent effect and a competing dissolution effect existing in the ternary system led to the increase and decrease in the solubilities of Disperse Yellow 119 and Disperse Red 73, respectively. The solubility data of the two dyes and their mixture were correlated with two empirical models—the Chrastil and the Mendez-Santiago/Teja (MT) model.  相似文献   

11.
双光子荧光染料分子在生物医学成像中具有广阔的应用前景,但取代效应对分子结构以及光物理性质影响的探求相对匮乏.本文设计并研究了一系列脂滴检测染料分子,分析了分子的光学性质以及无辐射跃迁等.通过分子内弱相互作用和电子-空穴布居分析,阐述了其内在机理.结果表明,所研究的分子均具有优良的光物理性能、高效荧光量子产量、大的斯托克斯位移以及显著的双光子吸收截面等.本工作合理地解释了实验现象并阐述了取代效应对脂滴检测NAPBr染料分子的双光子吸收和激发态性质的影响,这为设计新型的高效有机分子提供了理论指导.  相似文献   

12.
The biological activity of natural polyamines is due in large part to their ability to form ion-pairing interactions with polyanionic biomolecules, such as proteins, oligonucleotides, and sulfated oligosaccharides. Unfortunately, the diversity of biogenic polyamines is compromised by their limitation to only just a few internitrogen spacers. As a proof-of-principle study, a synthetic split-pool library of linear triamines was screened in an on-bead assay against a selection of model trisulfonated azo dyes (1, 2, and 3) and a short glutamate-rich nonameric peptide (4) to demonstrate its use in the discovery of selective ligands via multivalent ion pairing. From screening a 196-membered split-pool library against the dyes in aqueous organic solutions, with or without spermidine as competing ligand, it was found that the most frequent residues possessed internitrogen distances that were very similar to the sulfonate distances on the dyes. The results from these screening assays were used in the design of two polyamine sequences (8, 8Aoc(R)-8Aoc(R), and 12, 2Acc(R)-epsilonAhx(R)) for follow-up studies in solution phase. These triamines demonstrated the same selectively toward dyes 2 and 3 as observed by the solid-phase approach. In addition, resin-supported triamines, synthesized as discrete compounds, were able to selectively extract either dye 2 or 3 from a mixture of the two, further verifying the observations made from the library screening efforts. With peptide 4, containing three glutamate residues, a preference was found for rather long residues (12 and 8 carbons long), which is suggestive of a linear peptide, rather than a helical motif under the conditions of the screening.  相似文献   

13.
The quenching of firefly bioluminescence (BL) in presence of xanthene dyes and tetratolylporphyrin was investigated. The BL intensity was quenched with an altered decay pattern in presence of xanthene dyes and tetratolylporphyrin. The electronic absorption spectra indicate that there is no significant interaction occurring between the dyes and the BL components in the ground state. The BL quenching decay rate and fluorescence quenching studies of luciferin by the dyes suggest an energy transfer through an exciplex, involving oxyluciferin, in the excited state and the dyes, in the ground state. The bimolecular quenching rate constant (K(q)) values obtained from fluorescence studies varied between 7.7 x 10(12) and 19.8 x 10(12)M(-1)s(-1). The magnitude of the bimolecular quenching rate constants confirmed the complex formation between dye and excited oxyluciferin. The exciplex subsequently undergoes a non-radiative decay to the ground state via a combination of heavy atom induced and F?rster-type energy transfer. The decay rate constants in presence and in absence of dyes vary between 7.47 x 10(-4) and 7.6 x 10(-2)s(-1). In the presence of dyes the effective decay rate constants (k(eff)) increased while the lifetime of light emitting species decreased. The kinetic studies in presence of singlet oxygen scavengers, like beta-carotene and NaN(3), prove that there is no significant quenching of the firefly BL due to the formation of singlet oxygen.  相似文献   

14.
Non-covalent interaction of coumarin laser dyes, namely coumarin-1 (C1), coumarin-481 (C481) and coumarin-6H (C6H), with a versatile macrocyclic host molecule cucurbit[7]uril (CB7), has been investigated in aqueous solution using photophysical methods. Steady-state and time-resolved fluorescence studies illustrate significant enhancements/modifications in the fluorescence yields, lifetimes and spectral features of C1, C481 and C6H on interaction with CB7, and are assigned to 1 : 1 complex formation between the dyes and the CB7 host. The complex formation is mainly driven by charge-dipole interaction, as evident from the binding constant values (K ~ 10(4)-10(5) M(-1)). The large changes in the excited state behaviour of C1 and C481 as compared to C6H in the presence of CB7 indicate that CB7 binds C1 and C481 through the encapsulation of the 7-N,N'-diethylamino group of the dyes and the structural rigidity imposed by this interaction dramatically alters the excited state properties of the dyes by preventing the conversion of their emissive intramolecular charge transfer (ICT) state to the non-radiative twisted intramolecular charge transfer (TICT) state. The present results direct towards the probable supramolecular approach using water soluble macrocyclic CB7, in the development of aqueous dye laser systems in the blue-green region.  相似文献   

15.
Core-shell nanocapsules intended to be used as drug scavengers were prepared using a surfactant mixture containing octadecyltrimethoxysilane (OTMS) as a reactive amphiphile, to form spherical templates. A siloxane shell was grown on the surface of the templates by reacting tetramethoxysilane (TMOS) with the silanol groups obtained after the hydrolysis and condensation of OTMS. Dynamic light scattering (DLS) showed that particles with diameters in the range of 100-200 nm were obtained, with core and shell sizes controlled by varying component compositions. Atomic force microscopy (AFM) was used to study the effect of the silica coating of the templates on their robustness after deposition on a substrate. Subsequently, we present studies on the encapsulation of two hydrophobic fluorescent dyes, which are sensors of polarity and rigidity. Steady-state fluorescence spectroscopy was used to examine the fluorescence response of the dyes before and after shell growth. Changes in the emission of the encapsulated dyes were related to changes in the polarity and rigidity of the microenvironment where the dyes were located and correlated to the AFM results. Finally, dye-free core-shell particles were used to sequester the dyes from aqueous suspensions. Fluorescence of the sequestered species was compared to the dye-loaded particles to determine the final fate of the fluorophores in the nanoparticles.  相似文献   

16.
Modified loofah was prepared by a simple chemical graft method to improve its adsorption for cationic dyes. Experimental results showed that the maximum amounts of basic magenta and methylene blue loaded on the modified loofah were 83.5 and 85.5 mg g?1, and that on the unmodified loofah were 22.2 and 33.7 mg g?1, respectively. The adsorption for both dyes could reach equilibrium after 300 min. A pseudo-second-order model is suitable for describing the adsorption and desorption kinetics of both dyes on the modified sorbent. According to the intra-particle diffusion model, sorption and desorption processes for the two dyes both presented two distinct phases and were mainly controlled by intra-particle diffusion. The dye-loaded modified loofah could be regenerated by using the mixture solution of HCl and ethanol (VHCl:Vethanol = 3:2) as eluent. Adsorption in the binary system showed that adsorption of the dyes was depressed by the presence of the other dye, and the two dyes could be removed efficiently when the initial concentrations were lower than 5.0 × 10?5 mol L?1. The Langmuir competitive model was suitable to predict the sorption isotherm in the binary system.  相似文献   

17.
2-氨基-10-羟基-5;10-二氢磷杂吖嗪-10-氧化物的合成、诱变性及应用;二氢磷杂吖嗪; 吡唑啉酮; 合成; 结构鉴定; 诱变性  相似文献   

18.
A method for radiative and non-radiative energy transfer between flourescent organic dyes incorporated in a thin film deposited on a glass and inorganic ions in the bulk or surface of the glass is proposed.  相似文献   

19.
Cyanine dyes are broadly used for fluorescence imaging and other photonic applications. 3,3′-Diethylthiacyanine (THIA) is a cyanine dye composed of two identical aromatic heterocyclic moieties linked with a single methine, –CH. The torsional degrees of freedom around the methine bonds provide routes for non-radiative decay, responsible for the inherently low fluorescence quantum yields. Using transient absorption spectroscopy, we determined that upon photoexcitation, the excited state relaxes along two parallel pathways producing three excited-state transients that undergo internal conversion to the ground state. The media viscosity impedes the molecular modes of ring rotation and preferentially affects one of the pathways of non-radiative decay, exerting a dominant effect on the emission properties of THIA. Concurrently, the polarity affects the energy of the transients involved in the decay pathways and further modulates the kinetics of non-radiative deactivation.  相似文献   

20.
The mechanism of the photodegradation of azo dyes via ultrasonication is studied using a combination of the high‐performance liquid chromatography and UV–vis spectroscopy with detailed analysis of the kinetics. Based on the kinetics studies of the sonodegradation, it was proposed that the degradation of azo dyes was a multistage process that involved: (1) the direct attack of azo bonds and phenyl rings of dyes by the sonochemically formed reactive oxygen species; (2) the activation of semiconductor particles by the light emitted during cavitation and the triggering of the photocatalytic pathways of dye degradation and (3) increase of the adsorption capacity of the semiconductor particles due to the sonomechanically induced interparticle collisions. The detailed kinetics study can help in following an effective process up‐scaling. It was demonstrated that extremely short pulses of light flashes in a cavitated mixture activated the surface of photocatalysts and significantly enhanced dye degradation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号