首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interfacial crack between two dissimilar elastic-plastic materials   总被引:1,自引:0,他引:1  
This paper presents an exact asymptotic analysis on the interfacial crack between two dissimilar elastic-plastic materials. These two materials have identical hardening exponent (n 1=n 2) but different hardening coefficient (α1 ≠ α2). Two groups of the near-crack-tip fields have been obtained, which not only satisfy the continuity of both tractions (σθ, τ) and displacements (u r ,u θ) on the interface, but also meet the traction free conditions on the crack faces. The first group of fields have the mode mixityM P quite close toM P =1 (MODE I) within the whole range 0 ≤ α12 < ∞. As for the second group of fields, which is only obtained within the narrow range 0.9 ≤ α12 ≤ 1, it is found that the mode mixity changes sharply with the ratio value α12. The project supported by National Natural Science Foundation of China  相似文献   

2.
Summary We study the two-dimensional instantaneous Stokes flow driven by gravity in a viscous triangular prism supported by a horizontal rigid substrate and a vertical wall. The oblique side of the prism, inclined at an angle α with respect to the substrate, is a fluid-air interface, where the stresses are zero and surface tension is neglected. We develop the stream function ψ in polar coordinates (r,θ) centered at the vertex of α and split it into an inhomogeneous part, which accounts for gravity effects, and a homogeneous part, which is expressed as a series expansion. The inhomogeneous part and the first term of the expansion may be envisioned, respectively, as self-similar solutions of the first kind and of the second kind for r→0, each one holding in complementary α domains with a crossover at α c =21.47, which we study in some detail. The coefficients of the series are calculated by truncating the expansion and using the method of direct collocation with a suitable set of points at the wall. The solution strictly holds for t=0, because later the free surface ceases to be a plane; nevertheless, it provides a good approximation for the early time evolution of the fluid profile, as shown by the comparison with numerical simulations. For 0<α<45, the vertex angle remains constant and the edge remains strictly at rest; the transition at α c manifests itself through a change in the rate of growth of the curvature. The time at which the edge starts to move (waiting time) cannot be calculated since the instantaneous solution ceases to be valid. For α>45, the instantaneous local solution indicates that the surface near the vertex is launched against the substrate so that the edge starts to move immediately with a power law dependence on time t. However, due to the high value of the exponent, the vertex may seem to be at rest for some finite time even in this case. Received 29 August 1997; accepted for publication 21 January 1998  相似文献   

3.
The flow-induced microstructure of a mesophase pitch was studied within custom-made dies for changing wall shear rates from 20 to 1,100 s − 1, a flow scenario that is typically encountered during fiber spinning. The apparent viscosity values, measured at the nominal wall shear rates ranging from 500 to 2,500 s − 1 using these dies, remain fairly constant. The microstructure was studied in two orthogonal sections: rθ (cross section) and rz (longitudinal mid plane). In these dies, the size of the microstructure gradually decreases toward the wall (to as low as a few micrometers), where shear rate is highest. Furthermore, as observed in the rθ plane of the capillary, for a significant fraction of the cross section, discotic mesophase has a radial orientation. Thus, the directors of disc-like molecules were aligned in the vorticity (θ) direction. As confirmed from the microstructure in the rz plane, most of the discotic molecules remain nominally in the flow plane. Orientation of the pitch molecules in the shear flow conditions is consistent with that observed in controlled low-shear rheometric experiments reported earlier. Microstructral investigation suggests that the radial orientation of carbon fibers obtained from a mesophase pitch originates during flow of pitch through the die.  相似文献   

4.
This study investigates the enhancement of the laminar forced convection characteristics of backward-facing step flow in a two-dimensional channel through the installation of solid and slotted baffles onto the channel wall. The effects of the height of baffle H b, inclination of baffle installation ϕb, height of slot in baffle H t, inclination of slot in baffle ϕt, and distance between the backward-facing step and baffle D on the flow structure, temperature distribution and Nusselt number variation for the system at various Re are numerically explored. Results show that a slotted baffle can enhance the average Nusselt number for the heating section of channel plate by the maximum 190% when Pr=0.7, H s=0.5, L=5, H b ≤ 0.3, W b ≤ 0.2, 0.1 ≤ D ≤ 0.5, 0° ≤ ϕb ≤ 45°, H t ≤ 0.1, 0° ≤ ϕt ≤ 45° and 50 ≤ Re ≤ 400. As for the solid baffle, the enhancement may be up by 230%. The solid baffle might cause the re-separation of main stream, and consequently result in poor local heat transfer coefficient in the end region of heating section. This disadvantage can be obviously improved as the baffle is slotted. Besides the penalty of increase in pressure drop due to the baffle installation is much higher for the situation with solid baffle.  相似文献   

5.
G. Emanuel  H. Hekiri 《Shock Waves》2007,17(1-2):85-94
A theory is developed for the vorticity and its substantial derivative just downstream of a curved shock wave, the resulting formulas are exact, algebraic, and explicit. Analysis is for a cylinder-wedge or sphere-cone body, at zero incidence, whose downstream half-angle is θb. Derived formulas directly depend only on the ratio of specific heats, γ, the freestream Mach number, M 1, the local slope and curvature of the shock, and the dimensionality parameter, σ, which is zero for a two-dimensional shock and unity for an axisymmetric shock. In turn, the slope and curvature depend on γ, M 1, and θb. Numerical results are provided for a bow shock in which θb is 5°, 10°, or 15°, M 1 is 2, 4, or 6, and γ = 1.4. There is little dependence on the half angle but a strong dependence on the freestream Mach number and on dimensionality. For vorticity and its substantial derivative, the dimensionality dependence gradually decreases with increasing Mach number. In comparison to the two-dimensional case, an axisymmetric shock generates considerable vorticity in a region relatively close to the symmetry axis. Moreover, the magnitude of the vorticity, in this region, is further enhanced in the flow downstream of the shock. This dimensionality difference in vorticity and its substantial derivative is attributed to the three-dimensional relief effect in an axisymmetric flow.
  相似文献   

6.
Twist maps (θ 1, r 1) = f (θ, r) on the plane are considered which do not exhibit any kind of periodicity in their dependence on θ. Some general results are obtained which typically yield the existence of infinitely many complete and bounded orbits. Examples that can be treated with this theory include oscillators of the type [(x)\ddot]+V¢(x)=p(t){\ddot{x}+V'(x)=p(t)} under appropriate hypotheses, the bouncing ball system, and the standard map.  相似文献   

7.
Mixing by secondary flow is studied by particle image velocimetry (PIV) in a developing laminar pulsating flow through a circular curved pipe. The pipe curvature ratio is η = r 0/r c  = 0.09, and the curvature angle is 90°. Different secondary flow patterns are formed during an oscillation period due to competition among the centrifugal, inertial, and viscous forces. These different secondary-flow structures lead to different transverse-mixing schemes in the flow. Here, transverse mixing enhancement is investigated by imposing different pulsating conditions (Dean number, velocity ratio, and frequency parameter); favorable pulsating conditions for mixing are introduced. To obviate light-refraction effects during PIV measurements, a T-shaped structure is installed downstream of the curved pipe. Experiments are carried out for the Reynolds numbers range 420 ≤ Rest ≤ 1,000 (Dean numbers 126.6 ≤ Dn ≤ 301.5) corresponding to non-oscillating flow, velocity component ratios 1 ≤ (β = U max,osc/U m,st) ≤ 4 (the ratio of velocity amplitude of oscillations to the mean velocity without oscillations), and frequency parameters 8.37 < (α = r 0(ω/ν)0.5) < 24.5, where α2 is the ratio of viscous diffusion time over the pipe radius to the characteristic oscillation time. The variations in cross-sectional average values of absolute axial vorticity (|ζ|) and transverse strain rate (|ε|) are analyzed in order to quantify mixing. The effects of each parameter (Rest, β, and α) on transverse mixing are discussed by comparing the dimensionless vorticities (|ζ P |/|ζ S |) and dimensionless transverse strain rates (|ε P |/|ε S |) during a complete oscillation period.  相似文献   

8.
Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio ν at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle ϕ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of ϕ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2≤a/c≤1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded center-elliptical crack front field, and a two-parameter K-Tz principle is proposed. The project supported by the National Natural Science Foundation of China (50275073) The English text was polished by Keren Wang.  相似文献   

9.
Flow characteristics in the interdisk midplane between two shrouded co-rotating disks were experimentally studied. A laser-assisted particle-laden flow-visualization method was used to identify the qualitative flow behaviors. Particle image velocimetry was employed to measure the instantaneous flow velocities. The flow visualization revealed rotating polygonal flow structures (hexagon, pentagon, quadrangle, triangle, and oval) existing in the core region of the interdisk spacing. There existed a difference between the rotating frequencies of the polygon and the disks. The rotating frequency ratio between the polygonal flow structure and the disks depended on the mode shapes of the polygonal core flow structures—0.8 for pentagon, 0.75 for quadrangle, 0.69 for triangle, and 0.6 for oval. The phase-resolved flow velocities relative to the bulk rotation speed of the polygonal core flow structure were calculated, and the streamline patterns were delineated. It was found that outside the polygonal core flow structure, there existed a cluster of vortex rings—each side of the polygon was associated with a vortex ring. The radial distributions of the time-averaged and phase-resolved ensemble-averaged circumferential and radial velocities were presented. Five characteristic regions (solid-body rotation region, hub-influenced region, buffer region, vortex region, and shroud-influenced region) were identified according to the prominent physical features of the flow velocity distributions in the interdisk midplane. In the solid-body rotation region, the fluid rotated at the angular velocity of the disks and hub. In the hub-influenced region, the circumferential flow velocity departed slightly from the disks’ angular velocity. The circumferential velocities in the hub-influenced and vortex regions varied linearly with variation of radial coordinates. The phase-resolved ensemble-averaged relative radial velocity profiles in the interdisk midplane at various phase angles exhibited grouping behaviors in three ranges of polygon phase angles (θ = 0 and α/2, 0 < θ < α/2, and α/2 < θ < α) because three-dimensional flow induced similar flow patterns to appear in the same range of polygon phase angles.  相似文献   

10.
Singh  B.M.  Danyluk  H.T.  Vrbik  J.  Rokne  J.  Dhaliwal  R.S. 《Meccanica》2003,38(4):453-465
This paper deals with the problem of twisting a non-homogeneous, isotropic, half-space by rotating a circular part of its boundary surface (0 r < a, z = 0) through a given angle. A ring (a < r < b, z = 0) outside the circle is stress-free and the remaining part (r > b, z = 0) is rigidly clamped. The shear modulus is assumed to vary with the cylindrical coordinates, r, z by the relation (z) = 1(c + z), c 0 where 1, c and are real constants. Expressions for some quantities of physical importance, such as torque applied at the surface of the disk and stress intensity factors, are obtained. The effects of non-homogeneity on torque and stress intensity factor are illustrated graphically.  相似文献   

11.
Theoretical and numerical analysis is performed for an inviscid axisymmetric vortical bathtub-type flow. The level of vorticity is kept high so that the image of the flow on the radial–axial plane (rz plane)is not potential. The most significant findings are: (1) the region of validity of the strong vortex approximation is separated from the drain by a buffer region, (2) the power-law asymptote of the stream function, specified by Δψ∼r 4/3Δz, appears near the axis when vorticity in the flow is sufficiently strong and (3) the local Rossby number in the region of the power-law is not very sensitive to the changes of the initial vorticity level in the flow and the global Rossby number. Received 3 April 2000 and accepted 29 September 2000  相似文献   

12.
In this work, positive solutions to a doubly nonlinear parabolic equation with a nonlinear boundary condition are considered. We study the problem where 0 < m, r, α < ∞ are parameters. It is known that for some values of the parameters there are solutions that blow up in finite time. We determine in terms of α ,m, r the blow-up sets for these solutions. We prove that single point blow-up occurs if max{m, r} < α, global blow-up appears for the range of parameters 0 < m < α < r and regional blow-up takes place if 0 < m < α = r and . In this case the blow-up set consists of the interval .  相似文献   

13.
The near-field flow structure of a tip vortex behind a sweptback and tapered NACA 0015 wing was investigated and compared with a rectangular wing at the same lift force and Re=1.81×105. The tangential velocity decreased with the downstream distance while increased with the airfoil incidence. The core radius was about 3% of the root chord c r, regardless of the downstream distance and α for α<8°. The core axial velocity was always wake-like. The core Γc and total Γo circulation of the tip vortex remained nearly constant up to x/c r=3.5 and had a Γco ratio of 0.63. The total circulation of the tip vortex accounted for only about 40% of the bound root circulation Γb. For a rectangular wing, the axial flow exhibited islands of wake- and jet-like velocity distributions with Γco=0.75 and Γob=0.70. For the sweptback and tapered wing tested, the inner region of the tip vortex flow exhibited a self-similar behavior for x/c r≥1.0. The lift force computed from the spanwise circulation distributions agreed well with the force-balance data. A large difference in the lift-induced drag was, however, observed between the wake integral method and the inviscid lifting-line theory.  相似文献   

14.
We find conditions for the unique solvability of the problem u xy (x, y) = f(x, y, u(x, y), (D 0 r u)(x, y)), u(x, 0) = u(0, y) = 0, x ∈ [0, a], y ∈ [0, b], where (D 0 r u)(x, y) is the mixed Riemann-Liouville derivative of order r = (r 1, r 2), 0 < r 1, r 2 < 1, in the class of functions that have the continuous derivatives u xy (x, y) and (D 0 r u)(x, y). We propose a numerical method for solving this problem and prove the convergence of the method. __________ Translated from Neliniini Kolyvannya, Vol. 8, No. 4, pp. 456–467, October–December, 2005.  相似文献   

15.
In this paper we show that problems concerning the development of a boundary layer on a semi-infinite plate when the outer flow speed is of the form U = (1 + ct)b a, and on a cylinder when the outer flow speed has the forms U = ctxm and U = (1 + ct)b axm, are self-similar. We present the results of numerical calculations for various values of , b, and m. We consider the problem of a stepwise nonstationary heating of a plate, impulsively set into motion in an incompressible fluid; we show that this problem is self-similar and obtain its solution numerically.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 122–125, July–August, 1975.  相似文献   

16.
Summary  This paper deals with the theoretical treatment of a three-dimensional elastic problem governed by a cylindrical coordinate system (r,θ,z) for a medium with nonhomogeneous material property. This property is defined by the relation G(z)=G 0(1+z/a) m where G 0,a and m are constants, i.e., shear modulus of elasticity G varies arbitrarily with the axial coordinate z by the power product form. We propose a fundamental equation system for such nonhomogeneous medium by using three kinds of displacement functions and, as an illustrative example, we apply them to an nonhomogeneous thick plate (layer) subjected to an arbitrarily distributed load (not necessarily axisymmetric) on its surfaces. Numerical calculations are carried out for several cases, taking into account the variation of the nonhomogeneous parameter m. The numerical results for displacement and stress components are shown graphically. Received 10 May 1999; accepted for publication 15 August 1999  相似文献   

17.
The physical mechanism for generation of streamwise vortices (or rib vortices) in the cylinder wake is numerically investigated with a finite-difference scheme. Rayleigh's theory of centrifugal instability for inviscid axisymmetric flow is extended to analyze the 2-D primary flows. Accordingly, an analytical dimensionless groupRay=−(r/v θ)∂v θ/∂r−1 is derived, wherev θ represents the velocity of a fluid element relative to the oncoming flow,r is the local curvature radius of the element pathline. Centrifugal instability occurs whenRay>0. Stability analyses are carried out with this discriminant for primary flows at different time levels in a half shedding period of the von Kármán (or vK) vortices. Unstable areas are identified and the locations of rib vortices are coincident well with the unstable areas within the first wavelength of vK vortices behind the cylinder. The numerical results also show that rib vortices experience amplification in this region. It is apparent that centrifugal instability plays an important role in the generation of rib vortices in the cylinder wake. The project spported by the National Natural Science Foundation of China  相似文献   

18.
Non-linear oscillation of circular cylindrical shells   总被引:1,自引:0,他引:1  
The method of multiple scales is used to analyze the non-linear forced response of circular cylindrical shells in the presence of a two-to-one internal (autoparametric) resonance to a harmonic excitation having the frequency Ω. If ωr and ar denote the frequency and amplitude of a flexural mode and ωb and ab denote the frequency and amplitude of the breathing mode, the steady-state response exhibits a saturation phenomenon when ωb ≈ 2ωr, if the excitation frequency Ω is near ωb. As the amplitude ƒ of the excitation increases from zero, ab increases linearly whereas ar remains zero until a threshold is reached. This threshold is a function of the damping coefficients and ωb−2ωr. Beyond this threshold ab remains constant (i.e. the breathing mode saturates) and the extra energy spills over into the flexural mode. In other words, although the breathing mode is directly excited by the load, it absorbs a small amount of the input energy (responds with a small amplitude) and passes the rest of the input energy into the flexural mode (responds with a large amplitude). For small damping coefficients and depending on the detunings of the internal resonance and the excitation, the response exhibits a Hopf bifurcation and consequently there are no steadystate periodic responses. Instead, the responses are amplitude- and phase-modulated motions. When Ω ≈ ωr, there is no saturation phenomenon and at close to perfect resonance, the response exhibits a Hopf bifurcation, leading again to amplitude- and phase-modulated or chaotic motions.  相似文献   

19.
A mixed convection flow of an optically dense viscous incompressible fluid along a horizontal circular cylinder has been studied with the effect of radiation when the surface temperature is uniform. Using appropriate transformations, the boundary layer equations governing the flow are reduced to local nonsimilarity form. Solutions of the governing equations are obtained employing the implicit finite difference method. Effects of varying the pertinent parameters, such as, the Planck number, R w the surface temperature parameter, θw and the buoyancy parameter, α on the local skin-friction and local heat transfer coefficients are shown graphically as well as in tabular form against the curvature parameter ξ, while taking Prandtl number Pr = 1.0. It is found that an increase of R dw or α leads to increases in the values of the local skin-friction and the local rate of heat transfer coefficients. At the stagnation point asymptotic solutions for large value of α are also obtained and the effect of the other pertinent parameters on the formation of the flow separation are studied. Received on 28 July 1998  相似文献   

20.
A MHD generator with a novel geometry is analyzed as a possible dc power source. The generator channel consists of two coaxial cylinders with a smooth annular space between them through which pressure driven ionized gas flows axially. Magnetic poles and electrodes separated by insulators are embedded in both the inner and outer cylinders. A one-dimensional steady state analysis is presented. It is shown that the internal impedance of the generator is a very sensitive function of the ratio of areas of the charge collecting electrodes to that of the magnetic poles. The generator efficiency analysis, on the other hand, indicates that there is an optimum area ratio corresponding to the maximum conversion efficiency. A comparison of the performance characteristics of this generator with those of a generator of rectangular cross section is presented. The average gas temperature and velocity, the magnetic flux density at the poles, and the volume displacement rate, etc., are assumed identical for the two cases in comparison. It is inferred that the novel channel analyzed herein is, in general, superior to the simple rectangular channel in the energy conversion scheme.Nomenclature a n - 2a width of the rectangular channel - a 1n , a 2n , b 1n , b 2n constants - B magnetic flux density, both induced and applied - B r0 maximum value of radial component of B at r=r i - B 0 applied magnetic field in the rectangular generator = B r0 - 2b height of the rectangular channel - C n r i r o n +r o r i n - C –n r i r o n +r o r i –n - c integration constant - D n - E electric field strength - maximum value of azimuthal component of E at r=r i - G n C –n r n +C n r n - G –n C –n r nC n r n - H n G n r –1 - H –n G –n r –1 - I r total radial current between a pair of opposite electrodes - j electric current density - p pressure of the ionized gas - P number of magnetic poles in each cylinder of the generator - P HT power loss due to heat transfer to the walls - P i power input - P o power output - R ic internal impedance of the coaxial channel MHD generator consisting of an opposite pair of electrodes associated with the magnetic poles, insulators, and the channel in between, for a unit length of the channel - R ir internal impedance of the rectangular generator for a unit length of the channel = a/b - R 0 external load connected to the MHD generator - r radial coordinate of the cylindrical coordinate system - r i, r o radii of the inner and outer cylinders, respectively - V fluid velocity - z axial coordinate of the cylindrical coordinate system - n nP/2 - azimuthal coordinate of the cylindrical coordinate system - e electrode angular width - pi pole-insulator angular width - electrical conductivity of the ionized gas - permeability of the medium - v coefficient of viscosity - (r, ) electric potential - (r i, )–(r o, ) potential difference between an opposite pair of electrodes - conversion efficiency of a MHD generator A paper based on some of this material was presented at the International Electron Devices Meeting, Washington (D.C.) October 1967.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号