首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Solid deposition, such as the formation of ice on outdoor facilities, the deposition of scale in water reservoirs, the sedimentation of fat, oil, and grease (FOG) in sewer systems, and the precipitation of wax in petroleum pipelines, cause a serious waste of resources and irreversible environmental pollution. Inspired by fish and pitcher plants, we present a self‐replenishable organogel material which shows ultra‐low adhesion to solidified paraffin wax and crude oil by absorption of low‐molar‐mass oil from its crude‐oil environment. Adhesion of wax on the organogel surface was over 500 times lower than adhesion to conventional material surfaces and the wax was found to slide off under the force of gravity. This design concept of a gel with decreased adhesion to wax and oil can be extended to deal with other solid deposition problems.  相似文献   

2.
Wax deposition is a frequent problem in oil pipelines and down-stream industries. Correct prediction of wax formation conditions is required to prevent this phenomenon. In this study, wax appearance temperature (WAT) of 12 Iranian oil and condensate samples were measured using viscometry data and differential scanning Calorimetry (DSC) analysis. Also, a new empirical correlation and intelligent artificial neural network (ANN) model were developed to estimate wax disappearance temperature (WDT) of crude oils. Specific gravity, pressure, and molecular weight of oil sample were used as input variables for these models. The ANN model was trained using different hidden neurons and training algorithms. Experimental measurements studies were used for validation of the new correlation. Comparing the results indicated that the ANN model has 0.27% error while most thermodynamic models have an average error of 0.35% to 2.19%. Also, the proposed correlation can predict WDT with good accuracy and minimum input data. Results show that this correlation has a maximum error of 1.16% for 310 published experimental data and 1.19% for 9 Iranian samples.  相似文献   

3.
In this paper, wax deposition in waxy crude oil transportation process was regarded as an irreversible process. Based on the entropy production rate equations, the linear phenomenological equations for the diffusion of wax molecules were derived by using the theory and method of non-equilibrium thermodynamics and heat-mass transfer. Combined with the mass and energy conservation laws, the differential equations of heat and mass transfer in the process of pipeline transportation were established, and the molecular diffusion rate of dissolved wax was solved. On the basis of this, the mathematical model of actual wax deposition rate was established by considering the attachment process and scouring process of the wax molecules. Taking an oil pipeline in Daqing as an example, the change law and influencing factors of the wax molecular diffusion coefficient, the wax deposition rate, and the net wax deposition rate were studied by numerical simulation. The wax deposition rate test results of the laboratory loop test were compared with the theoretical calculation results in order to analyze the accuracy and the adaptability of heat and mass coupling mechanism and to provide a theoretical basis for further study of wax deposition in the process of waxy oil pipeline transportation.  相似文献   

4.
《中国化学会会志》2018,65(8):925-931
Deposition of the wax is one of the thorny issues in the petroleum industry, invoking costly problems during the transportation and production of crude oil. Owing to its devastating impacts on oil companies' economy, it is essential to develop a simple and robust strategy for the quantitative estimation of wax deposition. In this paper, support vector regression (SVR) is first proposed to estimate the amount of wax deposition. Subsequently, an artificial neural network (ANN) is developed for wax deposition prediction. Eventually, a sophisticated committee machine (CM) is constructed for combining the results of the SVR and ANN models. Optimal contribution of each model in final prediction of the wax deposit is determined through genetic algorithm in CM. Statistical error analysis shows that the CM model performs better than the individual models performing alone.  相似文献   

5.
Thermal behavior of waxy oils is investigated using the techniques of thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). Model waxy oils and real waxy crude oils are utilized. Decomposition temperatures of waxy oils are obtained using TG analysis. The effects of thermal history, wax content, and additive on the gelation process of waxy oils are investigated using DSC. The DSC method provides a measure of wax solubility as well as solid fraction. An integration method and a computation method are utilized to predict solid fraction. In addition, wax crystallization onset points are obtained at the cooling rates ranging from 1 to 20 °C min?1. Similarly, wax dissolution endset points are obtained at heating rates ranging from 1 to 20 °C min?1. Extrapolated onset and endset points yield wax precipitation temperature and wax dissolution temperature, respectively. Subsequently, wax solubility curves are obtained using thermodynamic computations. A wax precipitation temperature method and a wax dissolution temperature method combine thermodynamic phase behavior with onset/endset points to predict solid fraction. Both the wax precipitation temperature method and the wax dissolution temperature method can predict solid fraction of waxy oil samples. The wax precipitation temperature method and the wax dissolution temperature method are accurate when the temperature is close to the wax appearance temperature. A heat-integration method provides accurate values of the solid fraction at temperatures significantly below the wax appearance temperature. Therefore, integration method and wax precipitation temperature/wax dissolution temperature method are combined to predict solid fraction. The effect of solid fraction on yield stress is also investigated using differential scanning calorimetry and rheometry. Finally, a new solid fraction dependent gel strength model is obtained for shut in and restart of waxy crude oil pipelines.  相似文献   

6.
This paper aims to develop a mathematical model to predict the wax deposition rate of waxy crude emulsions, combining heat and mass transfer mechanisms. According to the flow loop experimental results, the wax deposition rate increases with the decreasing average temperature of oil/wall in a manner of linear regularity, and shows a downtrend with the increase of water cut due to diffusion resistance. An applicable model is developed regarding emulsion properties, radial temperature gradient, shear stress, and wax diffusion coefficient. In model validation, the prediction results are in good agreement with experimental data with the relative errors within 28.87%.  相似文献   

7.
Wax precipitation and deposition is a recurring challenge in transportation of crude oil, and increased knowledge about the behavior of such systems is necessary. Microscopy and differential scanning calorimetry were used to follow the crystallisation of wax for two model systems. The amount of solid was also determined by the latter method as well. The flow and viscoelastic behavior were investigated around the wax precipitation temperature, and the yield stress was determined both after dynamic and static cooling. Interpretation of the results was carried out in view of crystal growth and microstructure of the wax crystals. The variables that were studied were wax composition, amount of wax and thermal and shear history.  相似文献   

8.
As pipeline transportation is widely used in the petroleum industry, the problem of wax deposition is a severe threat to the safety of oil and gas transportation. In addition, the mechanism of wax deposition is very complicated due to the presence of water phase. This paper tries to clarify the effects of water fraction, temperature difference and experimental period on the wax deposition process in water-in-oil emulsion system by a series of static cold finger experiments. The experimental results reveal that the average diffusion rates decrease with increased water fraction, longer experimental period and reduced temperature difference. Furthermore, on the basis of wax deposition experiments in cold finger apparatus and radial temperature distribution simulations via Fluent, the influence of water phase on heat transfer occurring in the wax molecular diffusion process is revealed, and relationship between mass transfer and heat transfer is investigated. Additionally, the effective diffusion coefficient of wax molecules is calculated on the basis of experimental and simulation results. The calculated effective diffusion coefficients using this approach are significantly lower than the calculated results from conventional methods. This explains the remarkable disparity with previous works due to underestimating the influence of dispersed water.  相似文献   

9.
为了研究稠油不同组分的特征及其相互作用,利用柱层色谱分离法、傅里叶红外光谱、差示扫描量热法(DSC)和偏光显微分析等表征方法及手段,对采自玉门油田的稠油样品进行了组分分离、分析,并对饱和烃组分结蜡行为的影响进行了研究。结果表明,稠油各组分相互作用可以有效抑制蜡晶的析出。饱和烃组分(A1)中分别加入其他不同极性组分后,其结蜡行为与原油原始状态差异较大;A1的析蜡点、析蜡峰温和析蜡量均有所降低。偏光显微分析发现胶质沥青质组分使A1冷却结晶时的蜡晶颗粒数增多,尺寸相对减小,可以减弱蜡晶之间的联结强度,削弱蜡晶缔合而形成大块蜡晶聚集体的倾向。  相似文献   

10.
Accumulation of paraffin wax in the equipment for petroleum production causes large financial losses. The most effective and most economic means of avoiding deposition is often to add chemical additives to the crude oil, but it is not easy to find the most suitable additive for a particular situation because the phenomena involved are too complex for traditional approaches. Principal component analysis is used for data reduction of parameters to represent chemical additives and crude oils. On the basis of physicochemical properties (including spectral parameters) and the activity of additives on the crystallisation temperature of the paraffin wax, crude oils are classified into two families and chemical inhibitors into three families. A model for predicting the activity of additives is discussed.  相似文献   

11.
《Colloids and Surfaces》1988,29(1):133-146
The high viscosity of many asphaltic crude oils and the high pour points of many waxy crude oils present significant problems in their transportation over long distances by pipeline and tanker. While heating the oils and insulating the pipelines will help alleviate the problem, there is danger associated with an extended shutdown of flow and either congealing or solidification of the oil. A possible solution which we have studied in the laboratory is the emulsification or dispersion of the oil in water or brine so that shear takes place in the continuous aqueous phase rather than the oil droplets or particles.Synthetic waxy crude oils were prepared by dissolving paraffin wax in white mineral oil at slightly elevated temperatures and then measuring the pour point. One containing 30% wax had a pour point of 43°C and was selected for preparations of the dispersions. This was emulsified in water at a temperature higher than the pour point by using a suitable surfactant as an emulsifying agent. Rheological properties were measured at various temperatures and are reported in the paper. The method shows great promise for use in countries such as China which produce significant quantities of waxy crude oil and have seasonal temperatures significantly lower than the pour point of the crude oil.  相似文献   

12.
乙烯-乙酸乙烯酯共聚物(EVA)是原油常用的降凝剂(PPDs),但其分子结构相对比较单一,对部分油品降凝效果不佳。 为了提高EVA的降凝效果,使用硬脂酰氯与羟基化的EVA直接反应的方法制备烷基长链接枝改性EVA,并与带有烷基长链的倍半硅氧烷(SS)纳米粒子进行复配。 研究了改性EVA和SS复配降凝剂对蜡油的降凝效果和降凝机理。 结果表明:复配降凝剂为蜡提供晶核,使蜡晶变小并降低蜡的沉淀量,导致蜡油中形成的蜡晶难以搭接在一起,形成了松散的结构,当复配质量比m(EVA-g)∶m(SS-L)=1∶2时,在蜡油中的质量分数为0.1%时,蜡油倾点降低了25 ℃。  相似文献   

13.
Natural gas production from a gas reservoir(Reservoir A)located in the south of Iran,presents solids deposition during processing because the condensate contains suspended and dissolved solids.Solids deposition occurs not only in the transportation lines from the wells to the separators but also in the various operating units of gas streams and condensate stream.In this study,the multisolid-phase model has been used to predict the wax precipitation from gas and gas condensate fluids.The properties of gas and liquid phases are described using the Soave-Redlich-Kwong(SRK)equation of state.The model is then used to predict the possibility of the wax formation in Reservoir A gas facilities,located at the south of Iran.Solid deposition which occurred in the various streams of that facility confirmed the calculated results.Finally,the wax appearance temperature(WAT),the weight percent of wax formation and the effects of pressure and temperature on the wax formation were also predicted.  相似文献   

14.
Thermodynamic phase equilibria of wax precipitation in crude oils   总被引:1,自引:0,他引:1  
Economic loss due to wax precipitation in oil exploitation and transportation has reached several billion dollars a year recently. Development of a model for better understanding of the process of wax precipitation is therefore very important to reduce the loss. In this paper, a new thermodynamic model for predicting phase equilibriums of crude oils is proposed. The modified SRK EOS and the UNIQUAC equations are used to describe the vapor, liquid phase and the wax, respectively. New correlations have been introduced to calculate the volume parameter, c, in SRK EOS and the heat of vaporization in UNIQUAC equation. The model can be used to describe the systems which contain paraffin, naphthene and aromatic fractions. New correlations for the enthalpies, temperatures of solid–solid transitions and fusion enthalpies of paraffins are established in this paper based on data obtained from open literature. By using the proposed modified model, the wax precipitation in hydrocarbon fluids has been predicted for three crude oil systems. The calculation results have been compared with experimental observations and those results obtained using regular solution models. It is found that wax precipitation in complex systems can be better predicted by using this new model.  相似文献   

15.
16.
To understand the effect of pour point depressants (PPD) on the wax growth is important for designing PPD additives for use with different oils with high efficiency and good economics. In our current study, molecular mechanics, molecular dynamics, and quantum mechanics calculations were performed to investigate the prohibited mechanism of ethylene/vinyl acetate (EVA) additives on the paraffin deposition in oils. On the wax surface, a single C18 molecule and clusters were preferably deposited on the wax surface (010) in a parallel conformation, which resulted in the formation of large blocks of wax crystal. MD simulation indicated that the linear conformation of EVA was more favorable to be adsorbed onto the carbon backbone of the wax surface (010) with the polar fragments of vinyl acetate staying upside of the surface. Furthermore, four EVA molecules can efficiently optimize the inhibition effect for the deposition of the solute C18 molecules over 10x8 size wax surface (010). According to the simulation results, a simplified rational model was established to estimate the minimum dosage of EVA-type PPD for fuels with different paraffin contents. In a certain degree, this simplified model has provided an effective route to correlate microstructures and the properties of polymer-involving systems, which will shed light on the application of theoretical studies in industries.  相似文献   

17.
Nanocomposites of attapulgite (ATT)/ethylene vinyl acetate copolymer (EVA) were prepared with organically modified ATT covering in EVA. Organically modified ATT was prepared using KH550 and organic acid. The effect of nano-hybrid on the flow behavior of model oil containing 15?wt% wax was evaluated. The wax crystallization and crystal morphology of the model oil at low temperature were observed by polarizing optical microscopy (POM). The results indicated that the nano-hybrid with long-chain organic acid-modified ATT exhibited a better effect compared with the nano-hybrid with short-chain organic acid-modified ATT, pure EVA. In addition, it is interesting to note that EVA (VA?=?32%)/stearic acid-modified ATT composite polymeric pour-point depressant (PPD) S-AtPPD(32) provided better cold-flow improvement for the model oil than EVA (VA?=?32%)-modified nano-SiO2 composite PPD N-SiPPD (32) with a low dose, which resulted in a regular, bar-shaped, and uniform arrangement of wax morphologies. The pour point of the model oil was reduced from 30°C to ?1°C when doped at 200?ppm S-AtPPD(32).  相似文献   

18.
《Fluid Phase Equilibria》2004,216(2):201-217
Reservoir hydrocarbon fluids contain heavy paraffins that may form solid phases of wax at low temperatures. Problems associated with wax formation and deposition are a major concern in production and transportation of hydrocarbon fluids. The industry has directed considerable efforts towards generating reliable experimental data and developing thermodynamic models for estimating the wax phase boundary.The cloud point temperature, i.e. the wax appearance temperature (WAT) is commonly measured in laboratories and traditionally used in developing and/or validating wax models. However, the WAT is not necessarily an equilibrium point, and its value can depend on experimental procedures. Furthermore, when determining the wax phase boundary at pipeline conditions, the common practice is to measure the wax phase boundary at atmospheric pressure, then apply the results to real pipeline pressure conditions. However, neglecting the effect of pressure and associated fluid thermophysical/compositional changes can lead to unreliable results.In this paper, a new thermodynamic model for wax is proposed and validated against wax disappearance temperature (WDT) data for a number of binary and multi-component systems. The required thermodynamic properties of pure n-paraffins are first estimated, and then a new approach for describing wax solids, based on the UNIQUAC equation, is described. Finally, the impact of pressure on wax phase equilibria is addressed.The newly developed model demonstrates good reliability for describing solids behaviour in hydrocarbon systems. Furthermore, the model is capable of predicting the amount of wax precipitated and its composition. The predictions compare well with independent experimental data, demonstrating the reliability of the thermodynamic approach.  相似文献   

19.
A technique for computation of the most general case of non-stationary nonisothermal regimes of pipelines was developed that accounts for a relation between heat and hydraulic regimes into pipelines. This technique can be used for simulation of engineering communication schemes of oil refining manufactures. Practical calculations of the some pipelines showed that an error of non-counting of parameter variability in the calculations of the dynamics of the heat transfer can reach 12–16%, thereby the error in pipeline cooling was higher than in heating.  相似文献   

20.
The nano-hybrid pour-point depressant (PPD) was prepared with organically modified nano-silica covering in EVA. The effects of modified nano-silica/EVA on the flow behavior and wax crystallization of model oils with different wax contents were evaluated. Compared with pure EVA and nano-silica/EVA, modified nano-silica/EVA exhibited a better effect, when doped with 500?ppm, the pour point of the model oil containing 20?wt% wax was reduced from 33°C to 0°C. However, it is noteworthy that pour point cannot accurately reflect the effect of YSiO2/EVA as cold flow improver for a high wax content. The crystal morphology and crystallization behavior of the model oils at low temperature were also observed using polarizing optical microscopy (POM). The results indicated that modified nano-silica/EVA can reduce the size of the wax crystals and disperse the wax crystals by heterogeneous nucleation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号