首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium-ion batteries have been widely used in daily electric appliance, but abusive accidents occurred from time to time. Lithium-ion batteries composed of various electrolytes (containing organic solvents, inorganic salts), binder, and electrode materials, which may be unstable under some abnormal conditions. The formulation or components of electrolytes played a crucial factor in affecting reactive hazards within the cell. In order to meet safety requirements of the lithium-ion batteries on electronic device, reseachers and scholars are continuing to do further studies on the important issues in relation to the lithium-ion batteries. This study aims to apply the differential scanning calorimeter for measuring the thermal or reactive hazards of the organic solvents related to the formulation of the electrolytes. Besides, thermal instabilities of lithiated graphite or deposited lithium with electrolytes were simulated by the reactions between metallic lithium (Li) and organic carbonates of linear and cyclic structures. Exothermic onset temperatures and enthalpy changes were measured and analyzed. Results showed that the thermal behaviors of these organic carbonates themselves or with lithium hexafluorophosphate liberated less enthalpy changes. However, violent exothermic reactions were detected between the linear or cyclic carbonates and lithium metal with larger enthalpy change larger than 1,000 J g?1 of lithium. This can be observed by Li reacted with diethyl carbonate at surprisingly lower onset temperature about 46.6 °C.  相似文献   

2.
Commercial lithium-ion batteries ranged from different sizes, shapes, capacities, electrolytes, anode and cathode materials, etc. have recently caused many incidents under abusive or normal operating conditions worldwide. Inherently safer designs with active or passive protections have became the captious issues that need more attentions paid to. In this study, the worst scenarios on thermal runaway of four commercial batteries were conducted and compared. A customized-made closed testing instrument was utilized to measure and track thermal behaviors of four brands of cylindrical lithium-ion batteries under maximum open circuit voltage condition. Characteristics on thermal hazards of lithium-ion batteries such as onset temperature, maximum temperature, maximum self-heat rate, maximum pressures, battery mass loss, etc. were measured and evaluated. Results point out that one brand of cells reached the maximum temperature and maximum self-heat rate of 590.9 K and 1,130.4 K min?1, respectively. In conclusion, in case of thermal runaway all the lithium-ion batteries will rupture the cell and catch fire automatically owing to the maximum temperatures over the auto-ignition temperature of electrolytes and the maximum pressure higher than four times of maximum allowable working pressure, respectively. In addition, Lithium-ion battery with cathode material of LiFePO4 was verified to be more stable than the lithium-ion battery with cathode material of LiMn2O4 or LiCoO2.  相似文献   

3.
Electrolytes with high lithium-ion conductivity, better mechanical strength and large electrochemical window are essential for the realization of high-energy density lithium batteries. Polymer electrolytes are gaining interest due to their inherent flexibility and nonflammability over conventional liquid electrolytes. In this work, lithium garnet composite polymer electrolyte membrane (GCPEM) consisting of large molecular weight (Wavg ~?5?×?106) polyethylene oxide (PEO) complexed with lithium perchlorate (LiClO4) and lithium garnet oxide Li6.28Al0.24La3Zr2O12 (Al-LLZO) is prepared by solution-casting method. Significant improvement in Li+ conductivity for Al-LLZO containing GCPEM is observed compared with the Al-LLZO free polymer membrane. Maximized room temperature (30 °C) Li+ conductivity of 4.40?×?10?4 S cm?1 and wide electrochemical window (4.5 V) is observed for PEO8/LiClO4?+?20 wt% Al-LLZO (GCPEM-20) membrane. The fabricated cell with LiCoO2 as cathode, metallic lithium as anode and GCPEM-20 as electrolyte membrane delivers an initial charge/discharge capacity of 146 mAh g?1/142 mAh g?1 at 25 °C with 0.06 C-rate.  相似文献   

4.
Although high ionic conductivities have been achieved in most solid-state electrolytes used in lithium metal batteries (LMBs), rapid and stable lithium-ion transport between solid-state electrolytes and lithium anodes remains a great challenge due to the high interfacial impedances and infinite volume changes of metallic lithium. In this work, a chemical vapor-phase fluorination approach is developed to establish a lithiophilic surface on rubber-derived electrolytes, which results in the formation of a resilient, ultrathin, and mechanically integral LiF-rich layer after electrochemical cycling. The resulting ultraconformal layer chemically connects the electrolyte and lithium anode and maintains dynamic contact during operation, thus facilitating rapid and stable lithium-ion transport across interfaces, as well as promoting uniform lithium deposition and inhibiting side reactions between electrolyte components and metallic lithium. LMBs containing the novel electrolyte have an ultralong cycling life of 2500 h and deliver a high critical current density of 1.1 mA cm−2 in lithium symmetric cells as well as showing good stability over 300 cycles in a full cell.  相似文献   

5.
All-solid-state polymer lithium-ion batteries are ideal choice for the next generation of rechargeable lithium-ion batteries due to their high energy, safety and flexibility. Among all polymer electrolytes, PEO-based polymer electrolytes have attracted extensive attention because they can dissolve various lithium salts. However, the ionic conductivity of pure PEO-based polymer electrolytes is limited due to high crystallinity and poor segment motion. An inorganic filler SiO2 nanospheres and a plasticizer Succinonitrile (SN) are introduced into the PEO matrix to improve the crystallization of PEO, promote the formation of amorphous region, and thus improve the movement of PEO chain segment. Herein, a PEO18−LiTFSI−5 %SiO2−5 %SN composite solid polymer electrolyte (CSPE) was prepared by solution-casting. The high ionic conductivity of the electrolyte was demonstrated at 60 °C up to 3.3×10−4 S cm−1. Meanwhile, the electrochemical performance of LiFePO4/CSPE/Li all-solid-state battery was tested, with discharge capacity of 157.5 mAh g−1 at 0.5 C, and capacity retention rate of 99 % after 100 cycles at 60 °C. This system provides a feasible strategy for the development of efficient all-solid-state lithium-ion batteries.  相似文献   

6.
任岩  文焱  连芳  仇卫华 《化学通报》2015,78(2):107-112
目前提高锂离子电池能量密度的途径主要有提高锂离子电池的工作电压和应用高工作电压的正极材料,因此,锂离子电池高电压电解液的研究和开发势在必行。本文概述了锂离子电池电解液和高电压电解液的特点,介绍了前线轨道理论中的HOMO和LUMO对电解液设计的指导意义。尤其是结合日本知名企业和科研机构在高电压电解液方面的研究成果,阐述了两种实现电解质高电压化的途径,即提高溶剂本身的耐氧化性和使用添加剂,总结了氟代酯、氟化醚、硼酸酯、砜类和耐氧化添加剂等用于高电压电解液中的关键物质类型,并讨论了目前高电压电解液研究开发所带来的启示。  相似文献   

7.
The complexation reactions between 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6 (DTBDB18C6) and Li+, Na+ and K+ ions were studied conductometrically in different acetonitrile–nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance-mole ratio data at different temperatures. At 20 °C and in nitromethane solvent, the stability of the resulting complexes varied in the order K+ > Na+ > Li+. The enthalpy and entropy changes of the complexation reactions were evaluated from the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture. The TΔS° versus ΔH° plot of thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reactions. The ab initio studies calculated at B3LYP/6-31G level of theory, indicate the binding energy of complexes decreases with increasing cation size in the gas phase. In the solution phase, DTBDB18C6 preferentially forms complexes with the larger ions rather than the smaller ions because the solvation energies of the smaller ions are large enough to overcome and reverse the trends in gas phase complexation. The findings of this study suggest that the current understanding of the factors influencing the selectivity of metal ion complexation by crown ethers may be in need of revision.  相似文献   

8.
介绍了一种新型锂盐――双乙二酸硼酸锂(LiBOB)的基本性质及制备进展,并重点综述了其在锂电中应用的有关研究,包括基于LiBOB电解液的导电性研究,对负极材料、正极材料的稳定性研究,与其他锂盐在锂离子电池中混合使用的性能研究等。  相似文献   

9.
n-Butyllithium and a variety of aryllithium compounds have been shown to react with a perfluoroalkylether ester (RfORfCO2R) at ?78°C to produce perfluoroalkylether ketones. In the absence of competing reactions, which may be due to additional reactive groups on the ester, high yields of ketones can be prepared. Steric hindrance adjacent to the carbonyl group has an important effect on rates of reactions. Low reaction temperature ?78°C is an important factor when secondary esters are used. At higher reaction temperatures >;?30°C, the secondary esters produce decreased yields of ketone due to the instability of the intermediate lithium salt of the hemiketal which decomposes to an aryl ester and a perfluorinated olefin.  相似文献   

10.
UV spectroscopy and cyclic voltammetry were used to examine the thermochemical and electrochemical stabilities of liquid sulfolane-based electrolyte systems for lithium and lithium-ion batteries. It was found that solutions of lithium salts in sulfolane are stable in prolonged keeping at 100°C. The thermochemical stability of lithium salt solutions in sulfolane changes in the order LiBF4 > LiClO4 ≈ LiN(CF3SO2)2 > LiCF3SO3. It was shown that the electrochemical stability of lithium salt solutions in sulfolane is in the range from 5.5 to 5.9 V (relative to Li/Li+) and prolonged action of high temperatures (100°C) does not yield electrochemically active thermal destruction products.  相似文献   

11.
It is a challenge to recover lithium from the leaching solution of spent lithium-ion batteries, and crown ethers are potential extractants due to their selectivity to alkali metal ions. The theoretical calculations for the selectivity of crown ethers with different structures to Li ions in aqueous solutions were carried out based on the density functional theory. The calculated results of geometries, binding energies, and thermodynamic parameters show that 15C5 has the strongest selectivity to Li ions in the three crown ethers of 12C4, 15C5, and 18C6. B15C5 has a smaller binding energy but more negative free energy than 15C5 when combined with Li+, leading to that the lithium ions in aqueous solutions will combine with B15C5 rather than 15C5. The exchange reactions between B15C5 and hydrated Li+, Co2+, and Ni2+ were analyzed and the results show that B15C5 is more likely to capture Li+ from the hydrated ions in an aqueous solution containing Li+, Co2+, and Ni2+. This study indicates that it is feasible to extract Li ions selectively using B15C5 as an extractant from the leaching solution of spent lithium-ion batteries.  相似文献   

12.
As a matter of fact, most of our technical electrochemical energy storage systems operate outside the limitations of thermodynamics. As in the case of rechargeable batteries with aqueous electrolytes (part I of this article), kinetics control the operation and safety also in batteries with nonaqueous electrolytes (this second and final part).A striking example is the lithium ion battery which possesses an operating voltage of >3,5 V and a very high energy density. From a thermodynamic viewpoint such a cell is impossible because the used organic electrolyte is in contact with two lithium insertion electrodes that operate at extreme reducing and oxidizing potentials, respectively. However, a unique mechanism kinetically prevents the decomposition of the electrolyte due to the formation of electronically insulating interphases between electrode and electrolyte that are still permeable to the electrochemically active Li+ cations. Lithium ion batteries have already made their breakthrough into the market as small format systems for portable electronics. The only „kinetically shielded”︁ high energy density, however, might be a safety complication for large format batteries, which are assembled for electric vehicle (EV) propulsion. Safety concerns are also valid for high temperature (300°C) batteries such as the sodium-sulfur and sodium-nickel chloride systems. These systems are still in the stage of „experimental batteries”︁, which may find future application in large units for EV's or uninterruptible power systems. The paper is concluded by a performance comparison of various rechargeable battery systems with aqueous and nonaqueous electrolytes. (Possible) applications in consumer electronics and EV's are discussed in more detail.  相似文献   

13.
Polyphosphate and polyphosphonate esters of molecular weights > 10,000 were synthesized by base-promoted, liquid-vapor and liquid-liquid interfacial polycondensations of hydroquinone (HQ) with 4-methylthiophenyl phosphorodichloridate (MTPP) and phenylphosphonic dichloride (PPD). The barium hydroxide-initiated liquid-vapor polycondensation of PPD and HQ in the temperature range of 15–95°C shows that [η] increases with reaction temperature and unfractionated yields exhibit a maximum at about 45°C. The analogous liquid-vapor polycondensation of MTPP and HQ between 25 and 854C also shows a maximum yield at 45°C, whereas [η] decreases with increase in reaction temperature. The results are contrasted with temperature dependencies of base-catalyzed, liquid-liquid polycondensation of HQ with MTPP and PPD. A different insight is obtained by analyzing the temperature effects on fractionated products. The relative importance of degradative saponification reactions are ranked as attack on chain ester linkages > phosphorus chloride reactant > end groups of growing chains.  相似文献   

14.
Tin(II) oxalate was studied as a novel precursor for active electrode materials in lithium-ion batteries. The discharge of lithium cells using tin oxalate electrodes takes place by three irreversible steps: tin reduction, forming a lithium oxalate matrix; solvent decomposition to form a passivating layer; and oxalate reduction in a two-electron process. These are followed by reversible alloying of tin with lithium, leading to a maximum discharge of 11 F/mol. Cycling of the cells showed reversible capacities higher than 600 mAh/g during the first five cycles and ca. 200 mAh/g after 50 cycles. Tin oxalate was converted to tin dioxide by thermal decomposition at 450 °C and also by a chemical method by dissolving tin oxalate powder in 33% v/v hydrogen peroxide at room temperature. The ultrafine nature of the tin dioxide powders obtained by this procedure allow their use as electrodes in lithium cells. The best capacity retention during the first five cycles was achieved for a sample heat treated to 250 °C to eliminate surface water. Electronic Publication  相似文献   

15.
Of the various beyond‐lithium‐ion battery technologies, lithium–sulfur (Li–S) batteries have an appealing theoretical energy density and are being intensely investigated as next‐generation rechargeable lithium‐metal batteries. However, the stability of the lithium‐metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long‐term stability of Li–S batteries. Herein, we report lithium azide (LiN3) as a novel electrolyte additive for all‐solid‐state Li–S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state‐of‐the‐art additive lithium nitrate (LiNO3).  相似文献   

16.
The membranes for gel polymer electrolyte (GPE) for lithium-ion batteries were prepared by electrospinning a blend of poly(vinylidene fluoride) (PVdF) with cellulose acetate (CA). The performances of the prepared membranes and the resulted GPEs were investigated, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), porosity, hydrophilicity, electrolyte uptake, mechanical property, thermal stability, AC impedance measurements, linear sweep voltammetry, and charge–discharge cycle tests. The effect of the ratio of CA to PVdF on the performance of the prepared membranes was considered. It is found that the GPE based on the blended polymer with CA:PVdF =2:8 (in weight) has an outstanding combination property-strength (11.1 MPa), electrolyte uptake (768.2 %), thermal stability (no shrinkage under 80 °C without tension), and ionic conductivity (2.61 × 10?3 S cm?1). The Li/GPE/LiCoO2 battery using this GPE exhibits superior cyclic stability and storage performance at room temperature. Its specific capacity reaches up to 204.15 mAh g?1, with embedded lithium capacity utilization rate of 74.94 %, which is higher than the other lithium-ion batteries with the same cathode material LiCoO2 (about 50 %).  相似文献   

17.
Under low temperature (LT) conditions (−80 °C∼0 °C), lithium-ion batteries (LIBs) may experience the formation of an extensive solid electrolyte interface (SEI), which can cause a series of detrimental effects such as Li+ deposition and irregular dendritic filament growth on the electrolyte surface. These issues ultimately lead to the degradation of the LT performance of LIBs. As a result, new electrode/electrolyte materials are necessary to address these challenges and enable the proper functioning of LIBs at LT. Given that most electrochemical reactions in lithium-ion batteries occur at the electrode/electrolyte interface, finding solutions to mitigate the negative impact caused by SEI is crucial to improve the LT performance of LIBs. In this article, we analyze and summarize the recent studies on electrode and electrolyte materials for low temperature lithium-ion batteries (LIBs). These materials include both metallic materials like tin, manganese, and cobalt, as well as non-metallic materials such as graphite and graphene. Modified materials, such as those with nano or alloying characteristics, generally exhibit better properties than raw materials. For instance, Sn nanowire-Si nanoparticles (SiNPs−In-SnNWs) and tin dioxide carbon nanotubes (SnO2@CNT) have faster Li+ transport rates and higher reversible capacity at LT. However, it′s important to note that when operating under LT, the electrolyte may solidify, leading to difficulty in Li+ transmission. The compatibility between the electrolyte and electrode can affect the formation of the solid electrolyte interphase (SEI) and the stability of the electrode/electrolyte system. Therefore, a good electrode/electrolyte system is crucial for successful operation of LIBs at LT.  相似文献   

18.
In this study, the thermal hazard features of various lithium-ion batteries, such as LiCoO2 and LiFePO4, were assessed properly by calorimetric techniques. Vent sizing package 2 (VSP2), an adiabatic calorimeter, was used to measure the thermal hazards and runaway characteristics of the 18650 lithium-ion batteries under an adiabatic condition. The thermal behaviors of the lithium-ion batteries were obtained at normal and abnormal conditions in this study. The critical parameters for thermal hazardous behavior of lithium-ion batteries were obtained including the exothermic onset temperature (T 0), heat of decomposition (ΔH), maximum temperature (T max), maximum pressure (P max), self-heating rate (dT/dt), and pressure rise rate (dP/dt). Therefore, the result indicates the thermal runaway situation of the lithium-ion battery with different materials and voltages in view the of TNT-equivalent method by VSP2. The hazard gets greater with higher voltage. Without the consideration of other anti-pressure measurements, different voltages involving 3.3, 3.6, 3.7, and 4.2 V are evaluated to 0.11, 0.23, 0.88, and 1.77 g of TNT. Further estimation of thermal runaway reaction and decomposition reaction of lithium-ion battery can also be confirmed by VSP2. It shows that the battery of a fully charged state is more dangerous than that of a storage state. The technique results showed that VSP2 can be used to strictly evaluate thermal runaway reaction and thermal decomposition behaviors of lithium-ion batteries. The loss prevention and thermal hazard assessment are very important for development of electric vehicles as well as other appliances in the future. Therefore, our results could be applied to define important safety indices of lithium-ion batteries for safety concerns.  相似文献   

19.
Organic ionic plastic crystal (OIPC) electrolytes are among the key enabling materials for solid-state and higher than ambient temperature lithium batteries. This work overviews some of the parameter studies on the Li|OIPC interface using lithium symmetrical cells as well as the optimisation and performance of Li|OIPC|LiFePO4 cells. The effects of temperature and electrolyte thickness on the cycle performance of the lithium symmetrical cell, particularly with respect to the interfacial and bulk resistances, are demonstrated. Whilst temperature change substantially alters both the interfacial and bulk resistance, changing the electrolyte thickness predominantly changes the bulk resistance only. In addition, an upper limit of the current density is demonstrated, above which irreversible processes related to electrolyte decomposition take place. Here, we demonstrate an excellent discharge capacity attained on LiFePO4|10 mol% LiNTf2-doped [C2mpyr][NTf2]|Li cell, reaching 126 mAh g-1 at 50 °C (when the electrolyte is in its solid form) and 153 mAh g-1 at 80 °C (when the electrolyte is in its liquid form). Most remarkably, at high temperature operation, the capacity retention at long cycles and high current is excellent with only a slight (3%) drop in discharge capacity upon increasing the current from 0.2 C to 0.5 C. These results highlight the real prospects for developing a lithium battery with high temperature performance that easily surpasses that achievable with even the best contemporary lithium-ion technology.  相似文献   

20.
Lithium metal is a promising anode material for next-generation high-energy-density batteries but suffers from low stripping/plating Coulombic efficiency and dendritic growth particularly at sub-zero temperatures. Herein, a poorly-flammable, locally concentrated ionic liquid electrolyte with a wide liquidus range extending well below 0 °C is proposed for low-temperature lithium metal batteries. Its all-anion Li+ solvation and phase-nano-segregation solution structure are sustained at low temperatures, which, together with a solid electrolyte interphase rich in inorganic compounds, enable dendrite-free operation of lithium metal anodes at −20 °C and 0.5 mA cm−2, with a Coulombic efficiency of 98.9 %. As a result, lithium metal batteries coupling thin lithium metal anodes (4 mAh cm−2) and high-loading LiNi0.8Co0.15Al0.05O2 cathodes (10 mg cm−2) retain 70 % of the initial capacity after 100 cycles at −20 °C. These results, as a proof of concept, demonstrate the applicability of locally concentrated ionic liquid electrolytes for low-temperature lithium metal batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号