首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Let A 1(x, D) and A 2(x, D) be differential operators of the first order acting on l-vector functions ${u= (u_1, \ldots, u_l)}$ in a bounded domain ${\Omega \subset \mathbb{R}^{n}}$ with the smooth boundary ${\partial\Omega}$ . We assume that the H 1-norm ${\|u\|_{H^{1}(\Omega)}}$ is equivalent to ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_1u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ and ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_2u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ , where B i  = B i (x, ν) is the trace operator onto ${\partial\Omega}$ associated with A i (x, D) for i = 1, 2 which is determined by the Stokes integral formula (ν: unit outer normal to ${\partial\Omega}$ ). Furthermore, we impose on A 1 and A 2 a cancellation property such as ${A_1A_2^{\prime}=0}$ and ${A_2A_1^{\prime}=0}$ , where ${A^{\prime}_i}$ is the formal adjoint differential operator of A i (i = 1, 2). Suppose that ${\{u_m\}_{m=1}^{\infty}}$ and ${\{v_m\}_{m=1}^{\infty}}$ converge to u and v weakly in ${L^2(\Omega)}$ , respectively. Assume also that ${\{A_{1}u_m\}_{m=1}^{\infty}}$ and ${\{A_{2}v_{m}\}_{m=1}^{\infty}}$ are bounded in ${L^{2}(\Omega)}$ . If either ${\{B_{1}u_m\}_{m=1}^{\infty}}$ or ${\{B_{2}v_m\}_{m=1}^{\infty}}$ is bounded in ${H^{\frac{1}{2}}(\partial\Omega)}$ , then it holds that ${\int_{\Omega}u_m\cdot v_m \,{\rm d}x \to \int_{\Omega}u\cdot v \,{\rm d}x}$ . We also discuss a corresponding result on compact Riemannian manifolds with boundary.  相似文献   

2.
In this paper, we consider the generalized Navier?CStokes equations where the space domain is ${\mathbb{T}^N}$ or ${\mathbb{R}^N, N\geq3}$ . The generalized Navier?CStokes equations here refer to the equations obtained by replacing the Laplacian in the classical Navier?CStokes equations by the more general operator (???) ?? with ${\alpha\in (\frac{1}{2},\frac{N+2}{4})}$ . After a suitable randomization, we obtain the existence and uniqueness of the local mild solution for a large set of the initial data in ${H^s, s\in[-\alpha,0]}$ , if ${1 < \alpha < \frac{N+2}{4}, s\in(1-2\alpha,0]}$ , if ${\frac{1}{2} < \alpha\leq 1}$ . Furthermore, we obtain the probability for the global existence and uniqueness of the solution. Specially, our result shows that, in some sense, the Cauchy problem of the classical Navier?CStokes equation is local well-posed for a large set of the initial data in H ?1+, exhibiting a gain of ${\frac{N}{2}-}$ derivatives with respect to the critical Hilbert space ${H^{\frac{N}{2}-1}}$ .  相似文献   

3.
In this paper, we construct stationary classical solutions of the incompressible Euler equation approximating singular stationary solutions of this equation. This procedure is carried out by constructing solutions to the following elliptic problem $$\left\{\begin{array}{l@{\quad}l} -\varepsilon^2 \Delta u = \sum\limits_{i=1}^m \chi_{\Omega_i^{+}} \left(u - q - \frac{\kappa_i^{+}}{2\pi} {\rm ln} \frac{1}{\varepsilon}\right)_+^p\\ \quad - \sum_{j=1}^n \chi_{\Omega_j^{-}} \left(q - \frac{\kappa_j^{-}}{2\pi} {\rm \ln} \frac{1}{\varepsilon} - u\right)_+^p , \quad \quad x \in \Omega,\\ u = 0, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x \in \partial \Omega,\end{array}\right.$$ where p > 1, ${\Omega \subset \mathbb{R}^2}$ is a bounded domain, ${\Omega_i^{+}}$ and ${\Omega_j^{-}}$ are mutually disjoint subdomains of Ω and ${\chi_{\Omega_i^{+}} ({\rm resp}.\; \chi_{\Omega_j^{-}})}$ are characteristic functions of ${\Omega_i^{+}({\rm resp}. \;\Omega_j^{-}})$ , q is a harmonic function. We show that if Ω is a simply-connected smooth domain, then for any given C 1-stable critical point of Kirchhoff–Routh function ${\mathcal{W}\;(x_1^{+},\ldots, x_m^{+}, x_1^{-}, \ldots, x_n^{-})}$ with ${\kappa^{+}_i > 0\,(i = 1,\ldots, m)}$ and ${\kappa^{-}_j > 0\,(j = 1,\ldots,n)}$ , there is a stationary classical solution approximating stationary m + n points vortex solution of incompressible Euler equations with total vorticity ${\sum_{i=1}^m \kappa^{+}_i -\sum_{j=1}^n \kappa_j^{-}}$ . The case that n = 0 can be dealt with in the same way as well by taking each ${\Omega_j^{-}}$ as an empty set and set ${\chi_{\Omega_j^{-}} \equiv 0,\,\kappa^{-}_j=0}$ .  相似文献   

4.
5.
In this paper, we consider the Cauchy problem for a nonlinear parabolic system ${u^\epsilon_t - \Delta u^\epsilon + u^\epsilon \cdot \nabla u^\epsilon + \frac{1}{2}u^\epsilon\, {\rm div}\, u^\epsilon - \frac{1}{\epsilon}\nabla\, {\rm div}\, u^\epsilon = 0}$ in ${\mathbb {R}^3 \times (0,\infty)}$ with initial data in Lebesgue spaces ${L^2(\mathbb {R}^3)}$ or ${L^3(\mathbb {R}^3)}$ . We analyze the convergence of its solutions to a solution of the incompressible Navier?CStokes system as ${\epsilon \to 0}$ .  相似文献   

6.
The paper addresses the question of the existence of a locally self-similar blow-up for the incompressible Euler equations. Several exclusion results are proved based on the L p -condition for velocity or vorticity and for a range of scaling exponents. In particular, in N dimensions if in self-similar variables ${u \in L^p}$ and ${u \sim \frac{1}{t^{\alpha/(1+\alpha)}}}$ , then the blow-up does not occur, provided ${\alpha > N/2}$ or ${-1 < \alpha \leq N\,/p}$ . This includes the L 3 case natural for the Navier–Stokes equations. For ${\alpha = N\,/2}$ we exclude profiles with asymptotic power bounds of the form ${ |y|^{-N-1+\delta} \lesssim |u(y)| \lesssim |y|^{1-\delta}}$ . Solutions homogeneous near infinity are eliminated, as well, except when homogeneity is scaling invariant.  相似文献   

7.
Consider a bounded domain ${{\Omega \subseteq \mathbb{R}^3}}$ with smooth boundary, some initial value ${{u_0 \in L^2_{\sigma}(\Omega )}}$ , and a weak solution u of the Navier–Stokes system in ${{[0,T) \times\Omega,\,0 < T \le \infty}}$ . Our aim is to develop regularity and uniqueness conditions for u which are based on the Besov space $$B^{q,s}(\Omega ):=\left\{v\in L^2_{\sigma}(\Omega ); \|v\|_{B^{q,s}(\Omega )} := \left(\int\limits^{\infty}_0 \left\|e^{-\tau A}v\right\|^s_q {\rm d} \tau\right)^{1/s}<\infty \right\}$$ with ${{2 < s < \infty,\,3 < q <\infty,\,\frac2{s}+\frac{3}{q} = 1}}$ ; here A denotes the Stokes operator. This space, introduced by Farwig et al. (Ann. Univ. Ferrara 55:89–110, 2009 and J. Math. Fluid Mech. 14: 529–540, 2012), is a subspace of the well known Besov space ${{{\mathbb{B}}^{-2/s}_{q,s}(\Omega )}}$ , see Amann (Nonhomogeneous Navier–Stokes Equations with Integrable Low-Regularity Data. Int. Math. Ser. pp. 1–28. Kluwer/Plenum, New York, 2002). Our main results on the regularity of u exploits a variant of the space ${{B^{q,s}(\Omega )}}$ in which the integral in time has to be considered only on finite intervals (0, δ ) with ${{\delta \to 0}}$ . Further we discuss several criteria for uniqueness and local right-hand regularity, in particular, if u satisfies Serrin’s limit condition ${{u\in L^{\infty}_{\text{loc}}([0,T);L^3_{\sigma}(\Omega ))}}$ . Finally, we obtain a large class of regular weak solutions u defined by a smallness condition ${{\|u_0\|_{B^{q,s}(\Omega )} \le K}}$ with some constant ${{K=K(\Omega, q)>0}}$ .  相似文献   

8.
We derive upper bounds on the waiting time of solutions to the thin-film equation in the regime of weak slippage ${n\in [2,\frac{32}{11})}$ . In particular, we give sufficient conditions on the initial data for instantaneous forward motion of the free boundary. For ${n\in (2,\frac{32}{11})}$ , our estimates are sharp, for n = 2, they are sharp up to a logarithmic correction term. Note that the case n = 2 corresponds—with a grain of salt—to the assumption of the Navier slip condition at the fluid-solid interface. We also obtain results in the regime of strong slippage ${n \in (1,2)}$ ; however, in this regime we expect them not to be optimal. Our method is based on weighted backward entropy estimates, Hardy’s inequality and singular weight functions; we deduce a differential inequality which would enforce blowup of the weighted entropy if the contact line were to remain stationary for too long.  相似文献   

9.
We study the following nonlinear Stefan problem $$\left\{\begin{aligned}\!\!&u_t\,-\,d\Delta u = g(u) & &\quad{\rm for}\,x\,\in\,\Omega(t), t > 0, \\ & u = 0 \, {\rm and} u_t = \mu|\nabla_{x} u|^{2} &&\quad {\rm for}\,x\,\in\,\Gamma(t), t > 0, \\ &u(0, x) = u_{0}(x) &&\quad {\rm for}\,x\,\in\,\Omega_0,\end{aligned} \right.$$ where ${\Omega(t) \subset \mathbb{R}^{n}}$ ( ${n \geqq 2}$ ) is bounded by the free boundary ${\Gamma(t)}$ , with ${\Omega(0) = \Omega_0}$ μ and d are given positive constants. The initial function u 0 is positive in ${\Omega_0}$ and vanishes on ${\partial \Omega_0}$ . The class of nonlinear functions g(u) includes the standard monostable, bistable and combustion type nonlinearities. We show that the free boundary ${\Gamma(t)}$ is smooth outside the closed convex hull of ${\Omega_0}$ , and as ${t \to \infty}$ , either ${\Omega(t)}$ expands to the entire ${\mathbb{R}^n}$ , or it stays bounded. Moreover, in the former case, ${\Gamma(t)}$ converges to the unit sphere when normalized, and in the latter case, ${u \to 0}$ uniformly. When ${g(u) = au - bu^2}$ , we further prove that in the case ${\Omega(t)}$ expands to ${{\mathbb R}^n}$ , ${u \to a/b}$ as ${t \to \infty}$ , and the spreading speed of the free boundary converges to a positive constant; moreover, there exists ${\mu^* \geqq 0}$ such that ${\Omega(t)}$ expands to ${{\mathbb{R}}^n}$ exactly when ${\mu > \mu^*}$ .  相似文献   

10.
This paper establishes the global in time existence of classical solutions to the two-dimensional anisotropic Boussinesq equations with vertical dissipation. When only vertical dissipation is present, there is no direct control on the horizontal derivatives and the global regularity problem is very challenging. To solve this problem, we bound the derivatives in terms of the ${L^\infty}$ -norm of the vertical velocity v and prove that ${\|v\|_{L^{r}}}$ with ${2\leqq r < \infty}$ does not grow faster than ${\sqrt{r \log r}}$ at any time as r increases. A delicate interpolation inequality connecting ${\|v\|_{L^\infty}}$ and ${\|v\|_{L^r}}$ then yields the desired global regularity.  相似文献   

11.
Hydrogels of different composition based on the copolymerization of N-isopropyl acrylamide and surfmers of different chemical structure were tested in elongation using Hencky/real definitions for stress, strain, and strain rate, offering a more scientific insight into the effect of deformation on the properties. In a range between $\dot {\varepsilon }=10$ and 0.01 s $^{-1}$ , the material properties are independent of strain rate and show a very clear strain hardening with a “brittle” sudden fracture. The addition of surfmer increases the strain at break $\varepsilon _{\mathrm {H}}^{\max }$ and at the same time leads to a failure of hyperelastic models. The samples can be stretched up to Hencky strains $\varepsilon _{\mathrm {H}}^{\max }$ between 0.6 and 2.5, depending on the molecular structure, yielding linear Young’s moduli E $_{0}$ between 2,700 and 39,000 Pa. The strain-rate independence indicates an ideal rubberlike behavior and fracture in a brittle-like fashion. The resulting stress at break $\sigma _{\textrm max}$ can be correlated with $\varepsilon _{\mathrm {H}}^{\max } $ and $E_{0}$ as well as with the solid molar mass between the cross-linking points $M_{\mathrm {c}}^{\textrm {solids}} $ , derived from $E_{0}$ .  相似文献   

12.
In this paper, we study the local behaviors of nonnegative local solutions of fractional order semi-linear equations ${(-\Delta )^\sigma u=u^{\frac{n+2\sigma}{n-2\sigma}}}$ with an isolated singularity, where ${\sigma\in (0,1)}$ . We prove that all the solutions are asymptotically radially symmetric. When σ = 1, these have been proved by Caffarelli et al. (Comm Pure Appl Math 42:271–297, 1989).  相似文献   

13.
In this work, we introduce a new method to prove the existence and uniqueness of a variational solution to the stochastic nonlinear diffusion equation ${{\rm d}X(t) = {\rm div} \left[\frac{\nabla X(t)}{|\nabla X(t)|}\right]{\rm d}t + X(t){\rm d}W(t) {\rm in} (0, \infty) \times \mathcal{O},}$ where ${\mathcal{O}}$ is a bounded and open domain in ${\mathbb{R}^N, N \geqq 1}$ and W(t) is a Wiener process of the form ${W(t) = \sum^{\infty}_{k = 1}\mu_{k}e_{k}\beta_{k}(t), e_{k} \in C^{2}(\overline{\mathcal{O}}) \cap H^{1}_{0}(\mathcal{O}),}$ and ${\beta_{k}, k \in \mathbb{N}}$ are independent Brownian motions. This is a stochastic diffusion equation with a highly singular diffusivity term. One main result established here is that for all initial conditions in ${L^2(\mathcal{O})}$ , it is well posed in a class of continuous solutions to the corresponding stochastic variational inequality. Thus, one obtains a stochastic version of the (minimal) total variation flow. The new approach developed here also allows us to prove the finite time extinction of solutions in dimensions ${1\leqq N \leqq3}$ , which is another main result of this work.  相似文献   

14.
In a previous paper (Dehghanpour et al., Phys Rev E 83:065302, 2011a), we showed that relative permeability of mobilized oil, $k_\mathrm{ro}$ , measured during tertiary gravity drainage, is significantly higher than that of the same oil saturation in other tests where oil is initially a continuous phase. We also showed that tertiary $k_\mathrm{ro}$ strongly correlates to both water saturation, $S_\mathrm{w}$ , water flux (water relative permeability), $k_\mathrm{rw}$ , and the change in water saturation with time, $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ . To develop a model and understanding of the enhanced oil transport, identifying which of these parameters ( $S_\mathrm{w},\,k_{\mathrm{rw}}$ , or $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ ) plays the controlling role is necessary, but in the previous experiments these could not be deconvolved. To answer the remaining question, we conduct specific three-phase displacement experiments in which $k_{\mathrm{rw}}$ is controlled by applying a fixed water influx, and $S_\mathrm{w}$ develops naturally. We obtain $k_{\mathrm{ro}}$ by using the saturation data measured in time and space. The results suggest that steady-state water influx, in contrast to transient water displacement, does not enhance $k_{\mathrm{ro}}$ . Instead, reducing water influx rate results in excess oil flow. Furthermore, according to our pore scale hydraulic conductivity calculations, viscous coupling and fluid positioning do not sufficiently explain the observed correlation between $k_{\mathrm{ro}}$ and $S_{\mathrm{w}}$ . We conclude that tertiary $k_{\mathrm{ro}}$ is controlled by the oil mobilization rate, which in turn is linked to the rate of water saturation decrease with time, $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ . Finally, we develop a simple model which relates tertiary $k_{\mathrm{ro}}$ to transient two-phase gas/water relative permeability.  相似文献   

15.
The prepared microporous hydrotalcite (HT)–silica membrane was found to exhibit the molecular sieving characteristic of pristine silica material and high $\mathrm{CO}_{2}$ adsorption capacity of HT. The combined properties made enhanced $\mathrm{CO}_{2}$ permeability and separability from $\mathrm{CH}_{4}$ possible. The gas transport in the membrane was predominantly surface adsorption. The porous membrane overcame the Knudsen limitation and yielded the highest separation selectivity of 120 at 40 % $\mathrm{CO}_{2}$ feed concentration, $30\,^{\circ }\mathrm{C}$ operating temperature, and 100 kPa pressure difference.  相似文献   

16.
We consider the steady Stokes and Oseen problems in bounded and exterior domains of ${\mathbb{R}^n}$ of class C k-1,1 (n = 2, 3; k ≥ 2). We prove existence and uniqueness of a very weak solution for boundary data a in ${W^{2-k-1/q,q} (\partial\Omega)}$ . If ${\Omega}$ is of class ${C^\infty}$ , we can assume a to be a distribution on ${\partial\Omega}$ .  相似文献   

17.
This paper provides universal, optimal moduli of continuity for viscosity solutions to fully nonlinear elliptic equations F(X, D 2 u) =  f(X), based on the weakest and borderline integrability properties of the source function f in different scenarios. The primary result established in this work is a sharp Log-Lipschitz estimate on u based on the L n norm of f, which corresponds to optimal regularity bounds for the critical threshold case. Optimal C 1,α regularity estimates are also delivered when ${f\in L^{n+\varepsilon}}$ . The limiting upper borderline case, ${f \in L^\infty}$ , also has transcendental importance to elliptic regularity theory and its applications. In this paper we show, under the convexity assumption on F, that ${u \in C^{1,{\rm Log-Lip}}}$ , provided f has bounded mean oscillation. Once more, such an estimate is optimal. For the lower borderline integrability condition allowed by the theory, we establish interior a priori estimates on the ${C^{0,\frac{n-2\varepsilon}{n-\varepsilon}}}$ norm of u based on the L n-ε norm of f, where ? is the Escauriaza universal constant. The exponent ${\frac{n-2\varepsilon}{n-\varepsilon}}$ is optimal. When the source function f lies in L q n > q > n?ε, we also obtain the exact, improved sharp Hölder exponent of continuity.  相似文献   

18.
In this paper, we establish the local well-posedness for the Cauchy problem of a simplified version of hydrodynamic flow of nematic liquid crystals in ${\mathbb{R}^3}$ for any initial data (u 0, d 0) having small ${L^{3}_{\rm uloc}}$ -norm of ${(u_{0}, \nabla d_{0})}$ . Here ${L^{3}_{\rm uloc}(\mathbb{R}^3)}$ is the space of uniformly locally L 3-integrable functions. For any initial data (u 0, d 0) with small ${\|(u_0, \nabla d_0)\|_{L^{3}(\mathbb{R}^3)}}$ , we show that there exists a unique, global solution to the problem under consideration which is smooth for t > 0 and has monotone deceasing L 3-energy for ${t \geqq 0}$ .  相似文献   

19.
For a domain ${\Omega \subset \mathbb{R}^{N}}$ we consider the equation $$-\Delta{u} + V(x)u = Q_n(x)|{u}|^{p-2}u$$ with zero Dirichlet boundary conditions and ${p\in(2, 2^*)}$ . Here ${V \geqq 0}$ and Q n are bounded functions that are positive in a region contained in ${\Omega}$ and negative outside, and such that the sets {Q n  > 0} shrink to a point ${x_0 \in \Omega}$ as ${n \to \infty}$ . We show that if u n is a nontrivial solution corresponding to Q n , then the sequence (u n ) concentrates at x 0 with respect to the H 1 and certain L q -norms. We also show that if the sets {Q n  > 0} shrink to two points and u n are ground state solutions, then they concentrate at one of these points.  相似文献   

20.
In this paper, we prove unique existence of solutions to the generalized resolvent problem of the Stokes operator with first order boundary condition in a general domain ${\Omega}$ of the N-dimensional Eulidean space ${\mathbb{R}^N, N \geq 2}$ . This type of problem arises in the mathematical study of the flow of a viscous incompressible one-phase fluid with free surface. Moreover, we prove uniform estimates of solutions with respect to resolvent parameter ${\lambda}$ varying in a sector ${\Sigma_{\sigma, \lambda_0} = \{\lambda \in \mathbb{C} \mid |\arg \lambda| < \pi-\sigma, \enskip |\lambda| \geq \lambda_0\}}$ , where ${0 < \sigma < \pi/2}$ and ${\lambda_0 \geq 1}$ . The essential assumption of this paper is the existence of a unique solution to a suitable weak Dirichlet problem, namely it is assumed the unique existence of solution ${p \in \hat{W}^1_{q, \Gamma}(\Omega)}$ to the variational problem: ${(\nabla p, \nabla \varphi) = (f, \nabla \varphi)}$ for any ${\varphi \in \hat W^1_{q', \Gamma}(\Omega)}$ . Here, ${1 < q < \infty, q' = q/(q-1), \hat W^1_{q, \Gamma}(\Omega)}$ is the closure of ${W^1_{q, \Gamma}(\Omega) = \{ p \in W^1_q(\Omega) \mid p|_\Gamma = 0\}}$ by the semi-norm ${\|\nabla \cdot \|_{L_q(\Omega)}}$ , and ${\Gamma}$ is the boundary of ${\Omega}$ . In fact, we show that the unique solvability of such a Dirichlet problem is necessary for the unique existence of a solution to the resolvent problem with uniform estimate with respect to resolvent parameter varying in ${(\lambda_0, \infty)}$ . Our assumption is satisfied for any ${q \in (1, \infty)}$ by the following domains: whole space, half space, layer, bounded domains, exterior domains, perturbed half space, perturbed layer, but for a general domain, we do not know any result about the unique existence of solutions to the weak Dirichlet problem except for q =  2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号