首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
A key challenge faced by organic electrodes is how to promote the redox reactions of functional groups to achieve high specific capacity and rate performance. Here, we report a two‐dimensional (2D) microporous covalent–organic framework (COF), poly(imide‐benzoquinone), via in situ polymerization on graphene (PIBN‐G) to function as a cathode material for lithium‐ion batteries (LIBs). Such a structure favors charge transfer from graphene to PIBN and full access of both electrons and Li+ ions to the abundant redox‐active carbonyl groups, which are essential for battery reactions. This enables large reversible specific capacities of 271.0 and 193.1 mAh g?1 at 0.1 and 10 C, respectively, and retention of more than 86 % after 300 cycles. The discharging/charging process successively involves 8 Li+ and 2 Li+ in the carbonyl groups of the respective imide and quinone groups. The structural merits of PIBN‐G will trigger more investigations into the designable and versatile COFs for electrochemistry.  相似文献   

3.
The cathode materials work as the host framework for both Li+ diffusion and electron transport in Li-ion batteries. The Li+ diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO2, promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (Veff) imposed in the bulk, thus driving more Li+ extraction/insertion and making LiCoO2 exhibit superior rate capability (154 mAh g−1 at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property.  相似文献   

4.
Poly(1,5‐diaminoanthraquinone) is synthesized by oxidative polymerization of diaminoanthraquinone monomers and investigated as an organic host for Li‐storage reaction. Benefiting from its high density of redox‐active, Li+‐associable benzoquinone groups attached to conducting polyaniline backbones, this polymer undergoes its cathodic reaction predominately through Li+‐insertion/extraction processes, delivering a very high reversible capacity of 285 mAh g?1. In addition, the PDAQ polymer cathode exhibits an excellent rate capability (125 mAh g?1 at 800 mA g?1) and a considerable cyclability with a capacity retention of ~160 mAh g?1 over 200 cycles, possibly serving as a sustainable, high capacity Li+ host cathode for Li‐ion batteries. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 235–238  相似文献   

5.
Recently, Li-ion batteries (LIBs) have attracted extensive attention owing to their wide applications in portable and flexible electronic devices. Such a huge market for LIBs has caused an ever-increasing demand for excellent mechanical flexibility, outstanding cycling life, and electrodes with superior rate capability. Herein, an anode of self-supported Fe3O4@C nanotubes grown on carbon fabric cloth (CFC) is designed rationally and fabricated through an in situ etching and deposition route combined with an annealing process. These carbon-coated nanotube structured Fe3O4 arrays with large surface area and enough void space can not only moderate the volume variation during repeated Li+ insertion/extraction, but also facilitate Li+/electrons transportation and electrolyte penetration. This novel structure endows the Fe3O4@C nanotube arrays stable cycle performance (a large reversible capacity of 900 mA h g−1 up to 100 cycles at 0.5 A g−1) and outstanding rate capability (reversible capacities of 1030, 985, 908, and 755 mA h g−1 at 0.15, 0.3, 0.75, and 1.5 A g−1, respectively). Fe3O4@C nanotube arrays still achieve a capacity of 665 mA h g−1 after 50 cycles at 0.1 A g−1 in Fe3O4@C//LiCoO2 full cells.  相似文献   

6.
Electrochemical reductive dissolution of Li–Mn–O and Li–Fe–Mn–O spinels and Li+ extraction/insertion in these oxides were performed using voltammetry of microparticles. Both electrochemical reactions are sensitive to the Fe/(Fe+Mn) ratio, specific surface area, Li content in tetrahedral positions, and Mn valence, and can be used for electrochemical analysis of the homogeneity of the elemental and phase composition of synthetic samples. The peak potential (E P) of the reductive dissolution of the Li–Mn–O spinel is directly proportional to the logarithm of the specific surface area. E P of Li–Fe–Mn–O spinels is mainly controlled by the Fe/(Fe+Mn) ratio. Li+ insertion/extraction can be performed with Mn-rich Li–Fe–Mn–O spinels in aqueous solution under an ambient atmosphere and it is sensitive to the regularity of the spinel structure, in particularly to the amount of Li in tetrahedral positions and the Mn valence. Electronic Publication  相似文献   

7.
Porous core–shell CuCo2S4 nanospheres that exhibit a large specific surface area, sufficient inner space, and a nanoporous shell were synthesized through a facile solvothermal method. The diameter of the core–shell CuCo2S4 nanospheres is approximately 800 nm„ the radius of the core is about 265 nm and the thickness of the shell are approximately 45 nm, respectively. On the basis of the experimental results, the formation mechanism of the core–shell structure is also discussed. These CuCo2S4 nanospheres show excellent Li storage performance when used as anode material for lithium-ion batteries. This material delivers high reversible capacity of 773.7 mA h g−1 after 1000 cycles at a current density of 1 A g−1 and displays a stable capacity of 358.4 mA h g−1 after 1000 cycles even at a higher current density of 10 A g−1. The excellent Li storage performance, in terms of high reversible capacity, cycling performance, and rate capability, can be attributed to the synergistic effects of both the core and shell during Li+ ion insertion/extraction processes.  相似文献   

8.
Li‐rich layered oxide Li1.18Ni0.15Co0.15Mn0.52O2 (LNCM) is, for the first time, examined as the positive electrode for hybrid sodium‐ion battery and its Na+ storage properties are comprehensively studied in terms of galvanostatic charge–discharge curves, cyclic voltammetry and rate capability. LNCM in the proposed sodium‐ion battery demonstrates good rate capability whose discharge capacity reaches about 90 mA h g?1 at 10 C rate and excellent cycle stability with specific capacity of about 105 mA h g?1 for 200 cycles at 5 C rate. Moreover, ex situ ICP‐OES suggests interesting mixed‐ions migration processes: In the initial two cycles, only Li+ can intercalate into the LNCM cathode, whereas both Li+ and Na+ work together as the electrochemical cycles increase. Also the structural evolution of LNCM is examined in terms of ex situ XRD pattern at the end of various charge–discharge scans. The strong insight obtained from this study could be beneficial to the design of new layered cathode materials for future rechargeable sodium‐ion batteries.  相似文献   

9.
有序中孔纳米多晶TiO~2薄膜的Li^+嵌脱行为   总被引:4,自引:0,他引:4  
傅正文  罗骞  张伟  赵东元  秦启宗 《化学学报》2000,58(10):1226-1229
以三嵌段高分子非离子表面活性剂为结构导向剂,在非水条件下,合成了具有均一孔径分布(6.5nm)、高比表面积的稳定的中孔纳米多晶TiO~2薄膜。用循环伏安与电位阶跃技术研究了薄膜的Li^+离子嵌入反应。结果表明,由非离子表面活性剂导向而成的中孔TiO~2薄膜具有较大的Li^+离子嵌入容量,伏安特性中双电层电容效应非常显著,Li^+离子在脱嵌过程中电荷传递系数在0.15~0.4之间,嵌入系数为(4.7~55)×10^-^1^2cm^2/s。这些结果显示了具有大的比表面中孔TiO~2薄膜具有不同一般Li^+离子嵌入TiO~2薄膜的电化学反应特征。  相似文献   

10.
Photoelectrochemical lithium (Li) extraction can be expected to provide a useful recycle of Li+ from waste Li-containing battery, but the process is limited by the photocathodes with poor Li+ absorption and low yield rate. Here, we have designed a hierarchical silicon (Si)-based photocathode with mixed-phase tungsten oxide (WO3) cocatalysts for photoelectrochemical Li extraction under 1 sun illumination, achieving a high Li yield rate of ≈223.0 μg cm−2 h−1 and an excellent faradaic efficiency of 91.9 % at 0.0817 V versus Li0/+ redox couple. The WO3 cocatalysts with the mixture of amorphous and crystalline phase accelerates the Li+ insertion and precipitation and enriches the concentration of Li+ at the photocathode surface. This robust photoelectrochemical Li extraction system provides a new insight on designing green and efficient route for cyclic utilization of Li resources in the sustainable energy field.  相似文献   

11.
一维棒状ZnO的制备及电化学嵌锂性能研究   总被引:1,自引:0,他引:1  
目前,商业化锂离子电池一般采用石墨作为负极材料,因其电位与金属锂电极的电位很接近,所以当电池反复循环和过充时,石墨表面易析出金属锂,会因形成枝晶而短路。在温度过高时还容易引起热失控。同时,锂离子电池的容量在很大程度上取决于负极的锂嵌入量,而且石墨材料容量相对较低  相似文献   

12.
Nanoporous Li4Ti5O12 (N-LTO) was prepared by sol–gel method using monodisperse polystyrene spheres as a template and followed by calcination process. The as-prepared N-LTO has a spinel structure, large special surface area, and nanoporous structure with the pore average diameter of about 100?nm and wall thickness of 50?nm. Electrochemical experiments show that N-LTO exhibits a high initial discharge capacity of 189?mAh?g?1 at 0.1?C rate cycled between 0.5 and 3.0?V and excellent capacity retention of 170?mAh?g?1 after 100?cycles. EIS and CV analysis show that N-LTO has a higher mobility for Li+ diffusion and a higher exchange current density, indicating an improved electrochemical performance. It is believed that the nanoporous structure has a larger electrode/electrolyte contact area, resulting in better electrochemical properties at high charge/discharge rates.  相似文献   

13.
Well-shaped and uniformly dispersed LiFePO_4 nanorods with a length of 400–500 nm and a diameter of about 100 nm, are obtained with participation of a proper amount of anion surfactant sodium dodecyl sulfonate(SDS) without any further heating as a post-treatment. The surfactant acts as a self-assembling supermolecular template, which stimulated the crystallization of LiFePO_4 and directed the nanoparticles growing into nanorods between bilayers of surfactant(BOS). LiFePO_4 nanorods with the reducing crystal size along the b axis shorten the diffusion distance of Li~+ extraction/insertion, and thus improve the electrochemical properties of LiFePO_4 nanorods. Such prepared LiFePO_4 nanorods exhibited excellent specific capacity and high rate capability with discharge capacity of 151 mAh/g, 122 mAh/g and 95 mAh/g at 0.1C, 1 C and 5 C, respectively. Such excellent performance of LiFePO_4 nanorods is supposed to be ascribed to the fast Li~+ diffusion velocity from reduced crystal size along the b axis and the well electrochemical conductivity. The structure, morphology and electrochemical performance of the samples were characterized by XRD, FE-SEM, HRTEM, charge/discharge tests, and EIS(electrochemical impedance spectra).  相似文献   

14.
By dissolving crystalline V2O5 in hydrogen peroxide and drying at elevated temperature, the V2O5 xerogel was obtained. Its electrochemical behaviour was examined in aqueous solution of LiNO3 by both cyclic voltammetry and galvanostatic charging/discharging cycling. Peak-to-peak potential separation observed at the cyclovoltammograms indicated fast Li+ intercalation/deintercalation reactions. Initial discharge capacity amounted to 69 mAhg?1, and after 100 charging/discharging cycles, capacity fade amounted to 11% only. This presents a remarkable improvement in comparison with the behaviour of crystalline, vanadium oxide based, lithium intercalates in aqueous electrolytes.  相似文献   

15.
Mesoporous titania, especially anatase, is attractive due to its potential applications. A novel method to control pore structure of titania, surfactant- or polymer modification, is proposed. The wet gels and gel films, prepared from Ti(O-nC4H9)4 were dried at 90°C and annealed at 500°C after immersion in surfactant or polymer solutions, and mesoporous anatase was obtained. The pore size, pore volume and specific surface area of the surfactant-modified bulk gels, estimated from N2 absorption-desorption curves, are more than twice larger than those of the gels without modification. The pore size of the surfactant-modified gel films, observed by SEM, are similar to that of the bulk gels. The pore size obviously depended on the size of micelles. The pore size of the gels modified with hydrophilic polymers hardly increased, but the pore volume and the specific surface area increased.  相似文献   

16.
P2‐type layered oxides suffer from an ordered Na+/vacancy arrangement and P2→O2/OP4 phase transitions, leading them to exhibit multiple voltage plateaus upon Na+ extraction/insertion. The deficient sodium in the P2‐type cathode easily induces the bad structural stability at deep desodiation states and limited reversible capacity during Na+ de/insertion. These drawbacks cause poor rate capability and fast capacity decay in most P2‐type layered oxides. To address these challenges, a novel high sodium content (0.85) and plateau‐free P2‐type cathode‐Na0.85Li0.12Ni0.22Mn0.66O2 (P2‐NLNMO) was developed. The complete solid‐solution reaction over a wide voltage range ensures both fast Na+ mobility (10?11 to 10?10 cm2 s?1) and small volume variation (1.7 %). The high sodium content P2‐NLNMO exhibits a higher reversible capacity of 123.4 mA h g?1, superior rate capability of 79.3 mA h g?1 at 20 C, and 85.4 % capacity retention after 500 cycles at 5 C. The sufficient Na and complete solid‐solution reaction are critical to realizing high‐performance P2‐type cathodes for sodium‐ion batteries.  相似文献   

17.
P2-type layered oxides suffer from an ordered Na+/vacancy arrangement and P2→O2/OP4 phase transitions, leading them to exhibit multiple voltage plateaus upon Na+ extraction/insertion. The deficient sodium in the P2-type cathode easily induces the bad structural stability at deep desodiation states and limited reversible capacity during Na+ de/insertion. These drawbacks cause poor rate capability and fast capacity decay in most P2-type layered oxides. To address these challenges, a novel high sodium content (0.85) and plateau-free P2-type cathode-Na0.85Li0.12Ni0.22Mn0.66O2 (P2-NLNMO) was developed. The complete solid-solution reaction over a wide voltage range ensures both fast Na+ mobility (10−11 to 10−10 cm2 s−1) and small volume variation (1.7 %). The high sodium content P2-NLNMO exhibits a higher reversible capacity of 123.4 mA h g−1, superior rate capability of 79.3 mA h g−1 at 20 C, and 85.4 % capacity retention after 500 cycles at 5 C. The sufficient Na and complete solid-solution reaction are critical to realizing high-performance P2-type cathodes for sodium-ion batteries.  相似文献   

18.
为提高锌镍电池ZnO的循环充放电性能,采用Bi(NO3)3水解沉积法对ZnO包覆Bi基化合物膜,系统研究了包覆ZnO的微结构和电化学性能。TEM,XRD和EDS表明由Bi6(NO3)4(OH)2O6·2H2O,BiO和Bi2O3组成的Bi基化合物膜包覆在ZnO表面。表面包覆能提高ZnO的循环性能和放电容量,含5.1wt%Bi的包覆ZnO循环性能稳定,平均放电容量为509mAh·g-1,利用率为78%,性能有较大改善。充放电曲线和循环伏安结果均表明包覆Bi基化合物膜能降低锌镍电池的充电平台,加宽放电平台,提高ZnO的电化学活性。包覆Bi基化合物膜能有效减小活性材料与碱性电解液的接触,抑制ZnO的溶解,提高循环稳定性;而包覆膜的微孔结构又可使活性材料接触到电化学反应必须的H2O和OH-,保证了高的放电容量。  相似文献   

19.
Storage stabilities of LiFePO4/C composite at different conditions are investigated in terms of structural and electrochemical evolutions. The results from different aging tests indicate that moisture and temperature are the key factors that have the most profound effects on the structure homogeneity which in turn influences the electrochemical performance of LiFePO4/C. Although the storage in a humid‐hot environment, such as saturated humidity air at 50°C, does not greatly influence the discharging capacity of LiFePO4/C, it does reduce the initial charging capacity, thus the amount of reversible Li+ ions in a practical LiFePO4/graphite cell decreases. This impact is explained by the lithium extraction during the storage, forming olivine FePO4 and associated Li3PO4. Elevated storage temperature also favors the delithiation process. The degree of delithiation increases from about 6% at 50°C to 18% at 80°C. It is also found that re‐calcination at 650°C effectively resolves the problem of the structural heterogeneity of the stored LiFePO4/C. Therefore both the initial charging capacity and coulombic efficiency of the stored sample in the first cycle revert to the original value of the fresh one.  相似文献   

20.
Surface reactivity and ion transfer processes of anatase TiO2 nanocrystals were studied using lithium bis(trifluoromethylsulfone)imide (LiTFSI) as a probing molecule. Analysis of synthesized anatase TiO2 by electron microscopy reveals aggregated nanoparticles (average size ~8 nm) with significant defects (holes and cracks). With the introduction of LiTFSI salt, the Li+-adsorption propensity towards the surface along the anatase (100) step edge plane is evident in both x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analysis. Ab initio molecular dynamics (AIMD) analysis corroborates the site-preferential interaction of Li+ cations with oxygen vacancies and the thermodynamically favorable transport through the (100) step edge plane. Using 7Li nuclear magnetic resonance (NMR) chemical shift and relaxometry measurements, the presence of Li+ cations near the interface between TiO2 and the bulk LiTFSI phase was identified, and subsequent diffusion properties were analyzed. The lower activation energy derived from NMR analysis reveals enhanced mobility of Li+ cations along the surface, in good agreement with AIMD calculations. On the other hand, the TFSI anion interaction with defect sites leads to CF3 bond dissociation and subsequent generation of carbonyl fluoride-type species. The multimodal spectroscopic analysis including NMR, electron paramagnetic resonance (EPR), and x-ray photoelectron spectroscopy (XPS) confirms the decomposition of TFSI anions near the anatase surface. The reaction mechanism and electronic structure of interfacial constituents were simulated using AIMD calculations. Overall, this work demonstrates the role of defects at the anatase nanoparticle surface on charge transfer and interfacial reaction processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号