首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The leading term in the large- $N$ asymptotics of the isomer count of fullerenes with $N$ carbon atoms is extracted from the published enumerations for $N\le 400$ with the help of methods of series analysis. The uncovered simple $N^9$ scaling is distinct from isomer counts of most classes of chemical structures that conform to mixed exponential/power-law asymptotics. The second leading asymptotic term is found to be proportional to $N^{25/3}$ . A conjecture concerning isomer counts of the IPR fullerenes is also formulated.  相似文献   

2.
The determination of the weighted $L_p$ norms of the real orthogonal polynomials of hypergeometric type $\left\{ y_n(x)\right\} $ is not only a very important problem per se in the theory of special functions, but also because of their recent entropic characterization and applications in quantum chemistry, quantum physics and information theory. Indeed, they essentially describe the $p$ th-order Rényi and Tsallis entropies of the numerous quantum systems whose wavefunctions are controlled by these polynomials. Moreover, for different values of $p$ , up to a constant factor, these norms characterize various fundamental and experimentally accessible quantities of many-electron systems. As well, the $L_p$ norms have been used to develop and interpret all energy components in the density-functional theory of the ground-state of atoms and molecules. The asymptotics of these quantities when $n \rightarrow \infty $ and $p>0$ have been recently calculated for Hermite polynomials, although not yet for Laguerre and Jacobi polynomials. Here, we determine the asymptotics ( $p\rightarrow \infty $ , $n$ fixed) of the weighted $L_p$ norms for general orthogonal polynomials in terms of the weight function and the coefficients of the second-order hypergeometric differential equation that they satisfy, and we apply it to the three classical families of real orthogonal polynomials. Moreover we analyse and discuss the monotonicity of this asymptotics, and we carry out a detailed numerical study of it.  相似文献   

3.
The energy $E(G)$ of a graph $G$ , a quantity closely related to total $\pi $ -electron energy, is equal to the sum of absolute values of the eigenvalues of $G$ . Two graphs $G_a$ and $G_b$ are said to be equienergetic if $E(G_a)=E(G_b)$ . In 2009 it was discovered that there are pairs of graphs for which the difference $E(G_a)-E(G_b)$ is non-zero, but very small. Such pairs of graphs were referred to as almost equienergetic, but a precise criterion for almost–equienergeticity was not given. We now fill this gap.  相似文献   

4.
We have obtained accurate heats of formation for the twenty natural amino acids by means of explicitly correlated high-level thermochemical procedures. Our best theoretical heats of formation, obtained by means of the ab initio W1-F12 and W2-F12 thermochemical protocols, differ significantly (RMSD = 2.3 kcal/mol, maximum deviation 4.6 kcal/mol) from recently reported values using the lower-cost G3(MP2) method. With the more recent G4(MP2) procedure, RMSD drops slightly to 1.8 kcal/mol, while full G4 theory offers a more significant improvement to 0.72 kcal/mol (max. dev. 1.4 kcal/mol for glutamine). The economical G4(MP2)-6X protocol performs equivalently at RMSD = 0.71 kcal/mol (max. dev. 1.6 kcal/mol for arginine and glutamine). Our calculations are in excellent agreement with experiment for glycine, alanine and are in excellent agreement with the recent revised value for methionine, but suggest revisions by several kcal/mol for valine, proline, phenylalanine, and cysteine, in the latter case confirming a recent proposed revision. Our best heats of formation at 298 K ( $\Delta H_{f,298}^{\circ }$ ) are as follows: at the W2-F12 level: glycine ?94.1, alanine $-$ 101.5, serine $-$ 139.2, cysteine $-$ 94.5, and methionine $-$ 102.4  kcal/mol, and at the W1-F12 level: arginine $-$ 98.8, asparagine $-$ 146.5, aspartic acid $-$ 189.6, glutamine $-$ 151.0, glutamic acid $-$ 195.5, histidine $-$ 69.8, isoleucine $-$ 118.3, leucine $-$ 118.8, lysine $-$ 110.0, phenylalanine $-$ 76.9, proline $-$ 92.8, threonine $-$ 149.0, and valine $-$ 113.6 kcal/mol. For the two largest amino acids, an average over G4, G4(MP2)-6X, and CBS-QB3 yields best estimates of $-$ 58.4 kcal/mol for tryptophan, and of $-$ 117.5 kcal/mol for tyrosine. For glycine, we were able to obtain a “quasi-W4” result corresponding to $\hbox {TAE}_e$  = 968.1, $\hbox {TAE}_0$  = 918.6, $\Delta H_{f,298}^{\circ }=-90.0$ , and $\Delta H_{f,298}^{\circ }=-94.0$  kcal/mol.  相似文献   

5.
Grid graphs on the plane, torus and cylinder are finite 2-connected bipartite graphs embedded on the plane, torus and cylinder, respectively, whose every interior face is bounded by a quadrangle. Let \(k\) be a positive integer, a grid graph is \(k\) -resonant if the deletion of any \(i \le k\) vertex-disjoint quadrangles from \(G\) results in a graph either having a perfect matching or being empty. If \(G\) is \(k\) -resonant for any integer \(k \ge 1\) , then it is called maximally resonant. In this study, we provide a complete characterization for the \(k\) -resonance of grid graphs \(P_m\times P_n\) on plane, \(C_m\times C_n\) on torus and \(P_m\times C_n\) on cylinder.  相似文献   

6.
A model reaction scheme in which two species $A$ and $B$ react to form an inert product is considered, with the possible linear decay of $A$ to a further inert prduct also included. The reaction between $A$ and $B$ is maintained by the input of $A$ from the boundary which keeps $A$ at a constant concentration. The cases when $B$ is immobile or free to diffuse are treated. In the former case reaction fronts in $B$ are seen to develop. Large time asymptotic solutions are derived which show that these fronts propagate across the reactor at rates proportional to $t^{1/2}$ or $\log t$ ( $t$ is a dimensionless time) depending on whether the extra decay step is included. A similar situation is seen when $B$ can diffuse when the linear decay step is not present. However, when this extra step is included in the reaction scheme the reaction zone reaches only a finite distance fronm the boundary at large times.  相似文献   

7.
We consider the following system coming from a lattice dynamical system stated by Kaneko (Phys Rev Lett, 65:1391–1394, 1990) which is related to the Belusov–Zhabotinskii reaction: $$\begin{aligned} x_{n}^{m+1}=(1-\varepsilon )f\left( x_{n}^{m}\right) +\frac{1}{2}\varepsilon \left[ f(x_{n-1}^{m})+f\left( x_{n+1}^{m}\right) \right] , \end{aligned}$$ where $m$ is discrete time index, $n$ is lattice side index with system size $L$ (i.e., $n=1, 2, \ldots , L$ ), $\varepsilon \ge 0$ is coupling constant, and $f(x)$ is the unimodal map on $I$ (i.e., $f(0)=f(1)=0$ , and $f$ has unique critical point $c$ with $0<c<1$ and $f(c)=1$ ). In this paper, we prove that for coupling constant $\varepsilon =1$ , this CML (Coupled Map Lattice) system is distributionally $(p, q)$ -chaotic for any $p, q\in [0, 1]$ with $p\le q$ , and that its principal measure is not less than $\mu _{p}(f)$ . Consequently, the principal measure of this system is not less than $\frac{2}{3}+\sum _{n=2}^{\infty }\frac{1}{n}\frac{2^{n-1}}{(2^{n}+1) (2^{n-1}+1)}$ for coupling constant $\varepsilon =1$ and the tent map $\Lambda $ defined by $\Lambda (x)=1-|1-2x|, x\in [0, 1]$ . So, our results complement the results of Wu and Zhu (J Math Chem, 50:2439–2445, 2012).  相似文献   

8.
In early work of March and Young (Phil Mag 4:384, 1959), it was pointed out for spin-free fermions that a first-order density matrix (1DM) for $N-1$ particles could be constructed from a 2DM ( $\Gamma $ ) for $N$ fermions divided by the diagonal of the 1DM, the density $n(\mathbf{r}_1)$ , as $2\Gamma (\mathbf{r}_1,\mathbf{r}^{\prime }_2;\mathbf{r}_1,\mathbf{r}_2)/n(\mathbf{r}_1)$ for any arbitrary fixed $\mathbf{r}_1$ . Here, we thereby set up a family of variationally valid 1DMS constructed via the above proposal, from an exact 2DM we have recently obtained for four electrons in a quintet state without confining potential, but with pairwise interparticle interactions which are harmonic. As an indication of the utility of this proposal, we apply it first to the two-electron (but spin-compensated) Moshinsky atom, for which the exact 1DM can be calculated. Then the 1DM is found for spin-polarized three-electron model atoms. The equation of motion of this correlated 1DM is exhibited and discussed, together with the correlated kinetic energy density, which is shown explicitly to be determined by the electron density.  相似文献   

9.
The intermediate and LS-coupling schemes for the free lanthanide ions $\text{ Pr }^{3+}$ Pr 3 + and $\text{ Tm }^{3+}$ Tm 3 + have been compared by the matrix elements of the tensor operator ${{\varvec{U}}}^{({\varvec{k}})}, \text{ k } = 2, 4, 6$ U ( k ) , k = 2 , 4 , 6 . The necessary eigenvectors and eigenvalues have been computed with the aid of four parameters, $\text{ F }_{2}, \text{ F }_{4}, \text{ F }_{6}$ F 2 , F 4 , F 6 , and $\zeta _{4\mathrm{f}}$ ζ 4 f , known from free-ion spectra of the same ions. It has been found that both coupling types for each ion lead to close values of ${\vert }{{\varvec{U}}}^{({\varvec{k}})}{\vert }^{2}$ | U ( k ) | 2 only for transitions from the ground level to certain lower-lying energy levels within the $4\text{ f }^\mathrm{N}$ 4 f N configuration.  相似文献   

10.
Fourier transform infrared spectroscopy of \(\hbox {CH}_{4}/\hbox {N}_{2}\) and \(\hbox {C}_{2}\hbox {H}_{m}/\hbox {N}_2\) ( \(m = 2, 4, 6\) ) gas mixtures in a medium pressure (300 mbar) dielectric barrier discharge was performed. Consumption of the initial gas and formation of other hydrocarbon and of nitrogen-containing HCN and \(\hbox {NH}_{3}\) molecules was observed. \(\hbox {NH}_{3}\) formation was further confirmed by laser absorption measurements. The experimental result for \(\hbox {NH}_{3}\) is at variance with simulation results.  相似文献   

11.
A three-step method to determine the eutectic composition of a binary or ternary mixture is introduced. The method consists in creating a temperature–composition diagram, validating the predicted eutectic composition via differential scanning calorimetry and subsequent T-History measurements. To test the three-step method, we use two novel eutectic phase change materials based on \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm O}\) and \(\mathrm{NH}_4\mathrm{NO}_3\)   respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\hbox {O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) with equilibrium liquidus temperatures of 12.4 and 3.9  \(\,^{\circ }\mathrm {C}\) respectively with corresponding melting enthalpies of 135 J \(\mathrm{g}^{-1}\) (237 J \(\mathrm{cm}^{-3}\) ) respectively 133 J \(\mathrm{g}^{-1}\) (225 J \(\mathrm{cm}^{-3}\) ). We find eutectic compositions of 75/25 mass% for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) and 73/27 mass% for \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) . Considering a temperature range of 15 K around the phase change, a maximum storage capacity of about 172 J \(\mathrm{g}^{-1}\) (302 J \(\mathrm{cm}^{-3}\) ) respectively 162 J \(\mathrm{g}^{-1}\) (274 J \(\mathrm{cm}^{-3}\) ) was determined for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) .  相似文献   

12.
Densities, ??, and viscosities, ??, of binary mixtures of 2-methyl-2-propanol with acetone (AC), ethyl methyl ketone (EMK) and acetophenone (AP), including those of the pure liquids, were measured over the entire composition range at 298.15, 303.15 and 308.15?K. From these experimental data, the excess molar volume $V_{\mathrm{m}}^{\mathrm{E}}$ , deviation in viscosity ????, partial and apparent molar volumes ( $\overline{V}_{\mathrm{m},1}^{\,\circ }$ , $\overline{V}_{\mathrm{m},2}^{\,\circ }$ , $\overline{V}_{\phi ,1}^{\,\circ}$ and $\overline{V}_{\phi,2}^{\,\circ} $ ), and their excess values ( $\overline{V}_{\mathrm{m},1}^{\,\circ \mathrm{E}}$ , $\overline{V}_{\mathrm{m,2}}^{\,\circ \mathrm{ E}}$ , $\overline {V}_{\phi \mathrm{,1}}^{\,\circ \mathrm{ E}}$ and $\overline{V}_{\phi \mathrm{,2}}^{\,\circ \mathrm{ E}}$ ) of the components at infinite dilution were calculated. The interaction between the component molecules follows the order of AP > AC > EMK.  相似文献   

13.
The coefficients \(c_{k}\) (k = 2, 4, 6) that pertain to spin-correlated matrix elements of the tensor operator \({{\varvec{U}}}^{{\varvec{(k)}}}\) have been evaluated by means of the differences \({{\varvec{U}}}^{{\varvec{(k)}}}\) (intermediate) \(-\) \({{\varvec{U}}}^{{\varvec{(k)}}}\) (LS) and the reduced matrix elements of the operator \({{\varvec{V}}}^{{\varvec{(1k)}}}\) . Only spin-allowed transitions have been considered from each ground level to the excited energy levels within the \(4\hbox {f}^{2}\) and \(4\hbox {f}^{12}\) configurations of the free ions Pr (3+) and Tm (3+), respectively. The values of the coefficients \(c_{k}\) thus found correspond in most cases by sign and order of magnitude to those determined in other sources as corrections to lanthanide (3+) crystal-field parameters.  相似文献   

14.
The reaction quotient Q can be expressed in partial pressures as $\hbox {Q}_\mathrm{P}$ or in mole fractions as $\hbox {Q}_{\mathrm{x}}$ . $\hbox {Q}_\mathrm{P}$ is ostensibly more useful than $\hbox {Q}_{\mathrm{x}}$ because the related $\hbox {K}_{\mathrm{x}}$ is a constant for a chemical equilibrium in which T and P are kept constant while $\hbox {K}_{\mathrm{P}}$ is an equilibrium constant under more general conditions in which only T is constant. However, as demonstrated in this work, $\hbox {Q}_{\mathrm{x}}$ is in fact more important both theoretically and technically. The relationships between $\hbox {Q}_{\mathrm{x}}$ , $\hbox {Q}_\mathrm{P}$ , and $\hbox {Q}_{\mathrm{C}}$ are discussed. Four examples of applications are given in detail.  相似文献   

15.
Extraction of microamounts of europium and americium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B?) in the presence of bis(diphenylphosphino)methane dioxide (DPPMDO, L) has been investigated. The equilibrium data have been explained assuming that the species $ {\text{HL}}^{ + } $ , $ {\text{HL}}_{2}^{ + } $ , $ {\text{ML}}_{2}^{3 + } $ , $ {\text{ML}}_{3}^{3 + } $ and $ {\text{ML}}_{4}^{3 + } $ (M3+ = Eu3+, Am3+) are extracted into the organic phase. The values of extraction and stability constants of the species in nitrobenzene saturated with water have been determined. It was found that the stability constants of the corresponding complexes $ {\text{EuL}}_{n}^{3 + } $ and $ {\text{AmL}}_{n}^{3 + } $ , where n = 2, 3 and L is DPPMDO, in water–saturated nitrobenzene are comparable, whereas in this medium the stability of the cationic species $ {\text{AmL}}_{4}^{3 + } $ (L = DPPMDO) is somewhat higher than that of $ {\text{EuL}}_{4}^{3 + } $ with the same ligand L.  相似文献   

16.
This paper is concerned with the following system which comes from a lattice dynamical system stated by Kaneko in (Phys Rev Lett 65:1391–1394, 1990) and is related to the Belusov–Zhabotinskii reaction: $$\begin{aligned} x_{n}^{m+1}=(1-\varepsilon )f(x_{n}^{m})+\frac{1}{2}\varepsilon \left[ f(x_{n-1}^{m})+f(x_{n+1}^{m})\right] , \end{aligned}$$ x n m + 1 = ( 1 ? ε ) f ( x n m ) + 1 2 ε [ f ( x n ? 1 m ) + f ( x n + 1 m ) ] , where $m$ m is discrete time index, $n$ n is lattice side index with system size $L$ L (i.e., $n=1, 2, \ldots , L$ n = 1 , 2 , … , L ), $\varepsilon $ ε is coupling constant, and $f(x)$ f ( x ) is the unimodal map on $I$ I (i.e., $f(0)=f(1)=0$ f ( 0 ) = f ( 1 ) = 0 and $f$ f has unique critical point $c$ c with $0<c<1$ 0 < c < 1 and $f(c)=1$ f ( c ) = 1 ). It is proved that for coupling constant $\varepsilon =1$ ε = 1 , this CML (Coupled Map Lattice) system is chaotic in the sense of Li–Yorke for each unimodal selfmap on the interval $I=[0, 1]$ I = [ 0 , 1 ] .  相似文献   

17.
We adopted an absolute-reaction model which is considering the hole(defect)-induced charged frictionless transport to explain the unusual experiment: Two single crystalline samples of the same nominal composition Rb \(_{0.8}\) Fe \(_2\) Se \(_2\) were prepared using the self-flux technique via two different precursor routes. Although the difference in the final chemical composition falls within a narrow range, one was superconducting with a \(T_c \sim 31\) K, while the other behaves like a narrow gap semiconductor.  相似文献   

18.
A Kekulé structure of a benzenoid or a fullerene $\Gamma $ Γ is a set of edges $K$ K such that each vertex of $\Gamma $ Γ is incident with exactly one edge in $K$ K . The set of faces in $\Gamma $ Γ that have exactly three edges in $K$ K are called the benzene faces of $K$ K . The Fries number of $\Gamma $ Γ is the maximum number of benzene faces over all possible Kekulé structures for $\Gamma $ Γ . The Clar number is the maximum number of independent benzene faces over all possible Kekulé structures for $\Gamma $ Γ . It is often assumed, but never proved, that some set of independent benzene faces giving the Clar number is a subset of a set of benzene faces giving the Fries number. In Hartung (The Clar structure of fullerenes, Ph.D. Dissertation. Syracuse University, 2012) it is shown that this assumption is false for a large class of fullerenes. In this paper, we prove that this assumption is valid for a large a class of benzenoids.  相似文献   

19.
The enthalpy of dissolution of FOX-12 in dimethyl sulfoxide (DMSO) was measured by means of a RD496-III Calvet microcalorimeter at 298.15 K. Empirical formulae for the calculation of the enthalpy of dissolution ( $ \Updelta_{\text{diss}} H $ ), relative partial molar enthalpy ( $ \Updelta_{\text{diss}} H_{\text{partial}} $ ), and relative apparent molar enthalpy ( $ \Updelta_{\text{diss}} H_{\text{apparent}} $ ) were obtained from the experimental data of the enthalpies of dissolution of FOX-12 in DMSO. The kinetic equation that describes the dissolution process of FOX-12 in DMSO at 298.15 K is determined as $ \frac{{{\text{d}}\alpha }}{{{\text{d}}t}} = 8.5 \times 10^{ - 3} (1 - \alpha )^{0.59} $ .  相似文献   

20.
The crystal structure of n-undecylammonium bromide monohydrate was determined by X-ray crystallography. The crystal system of the compound is monoclinic, and the space group is P21/c. Molar enthalpies of dissolution of the compound at different concentrations m/(mol·kg?1) were measured with an isoperibol solution–reaction calorimeter at T = 298.15 K. According to the Pitzer’s electrolyte solution model, the molar enthalpy of dissolution of the compound at infinite dilution ( $ \Updelta_{\text{sol}} H_{\text{m}}^{\infty } $ ) and Pitzer parameters ( $ \beta_{\text{MX}}^{(0)L} $ and $ \beta_{\text{MX}}^{(1)L} $ ) were obtained. Values of the apparent relative molar enthalpies ( $ {}^{\Upphi }L $ ) of the title compound and relative partial molar enthalpies ( $ \bar{L}_{2} $ and $ \bar{L}_{1} $ ) of the solute and the solvent at different concentrations were derived from experimental values of the enthalpies of dissolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号