首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dominant gas-phase conformer of [M+3H]3+ ions of the model peptide acetyl-PSSSSKSSSSKSSSSKSSSSK has been examined with ion mobility spectrometry (IMS), gas-phase hydrogen deuterium exchange (HDX), and mass spectrometry (MS) techniques. The [M+3H]3+ peptide ions are observed predominantly as a relatively compact conformer type. Upon subjecting these ions to electron transfer dissociation (ETD), the level of protection for each amino acid residue in the peptide sequence is assessed. The overall per-residue deuterium uptake is observed to be relatively more efficient for the neutral residues than for the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. In comparison, the N-terminal and C-terminal regions of the serine peptide show greater relative protection compared with interior residues. Molecular dynamics (MD) simulations have been used to generate candidate structures for collision cross section and HDX reactivity matching. Hydrogen accessibility scoring (HAS) for select structural candidates from MD simulations has been used to suggest conformer types that could contribute to the observed HDX patterns. The results are discussed with respect to recent studies employing extensive MD simulations of gas-phase structure establishment of a peptide system.
Graphical Abstract ?
  相似文献   

2.
Impact desolvation of electrosprayed microdroplets (IDEM) is a new method for producing gas-phase ions of large biomolecules. Analytes are dissolved in an electrolyte solution which is electrosprayed in vacuum, producing highly charged micron and sub-micron sized droplets (microdroplets). These microdroplets are accelerated through potential differences approximately 5 - 10 kV to velocities of several km/s and allowed to impact a target surface. The energetic impacts vaporize the droplets and release desolvated gas-phase ions of the analyte molecules. Oligonucleotides (2- to 12-mer) and peptides (bradykinin, neurotensin) yield singly and doubly charged molecular ions with no detectable fragmentation. Because the extent of multiple charging is significantly less than in atmospheric pressure electrospray ionization, and the method produces ions largely free of adducts from solutions of high ionic strength, IDEM has some promise as a method for coupling to liquid chromatographic techniques and for mixture analysis. Ions are produced in vacuum at a flat equipotential surface, potentially allowing efficient ion extraction.  相似文献   

3.
Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.
Graphical Abstract ?
  相似文献   

4.
The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR.
Graphical Abstract ?
  相似文献   

5.
The contents of the structural channels of beryl, grown hydrothermally from an ammonium-containing solution, were investigated by IR and EPR spectroscopy. Using IR spectroscopy we found that water molecules, ammonium ions, and a small number of HCl molecules enter the structural channels of beryl in the course of mineral growth. In these beryls, the ammonium ions play the role of alkali cations. The ammonium ions are as rigidly fixed in the lattice as are water molecules; they are eliminated by calcination at high temperatures close to the decomposition temperature. On exposure to radiation at 77 K, the paramagnetic NH 3 + and H0 radicals are stabilized in the structural channels of beryl. In addition to the known H0 radical, other states of atomic hydrogen, interacting with medium protons, are observed as well. For one of the additional radicals, Hb, we suggest the model of atomic hydrogen stabilized at the center of a silicon-oxygen ring with two water molecules in adjacent cavities.  相似文献   

6.
Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M – 2H]2– ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M – 3H]3– ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M – 2H]2– ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M – 3H]3– ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.
Graphical Abstract ?
  相似文献   

7.
Owing to its versatility, electron transfer dissociation (ETD) has become one of the most commonly utilized fragmentation techniques in both native and non-native top-down mass spectrometry. However, several competing reactions—primarily different forms of charge reduction—occur under ETD conditions, as evidenced by the distorted isotope patterns usually observed. In this work, we analyze these isotope patterns to compare the stability of nondissociative electron transfer (ETnoD) products, specifically noncovalent c/z fragment complexes, across a range of ubiquitin conformational states. Using ion mobility, we find that more extended states are more prone to fragment release. We obtain evidence that for a given charge state, populations of ubiquitin ions formed either directly by electrospray ionization or through collapse of more extended states upon charge reduction, span a similar range of collision cross-sections. Products of gas-phase collapse are, however, less stabilized towards unfolding than the native conformation, indicating that the ions retain a memory of previous conformational states. Furthermore, this collapse of charge-reduced ions is promoted if the ions are ‘preheated’ using collisional activation, with possible implications for the kinetics of gas-phase compaction.
Graphical Abstract ?
  相似文献   

8.
We report a custom-geometry linear ion trap designed for fluorescence spectroscopy of gas-phase ions at ambient to cryogenic temperatures. Laser-induced fluorescence from trapped ions is collected from between the trapping rods, orthogonal to the excitation laser that runs along the axis of the linear ion trap. To increase optical access to the ion cloud, the diameter of the round trapping rods is 80% of the inscribed diameter, rather than the roughly 110% used to approximate purely quadrupolar electric fields. To encompass as much of the ion cloud as possible, the first collection optic has a 25.4 mm diameter and a numerical aperture of 0.6. The choice of geometry and collection optics yields 107 detected photons/s from trapped rhodamine 6G ions. The trap is coupled to a closed-cycle helium refrigerator, which in combination with two 50 Ohm heaters enables temperature control to below 25 K on the rod electrodes. The purpose of the instrument is to broaden the applicability of fluorescence spectroscopy of gas-phase ions to cases where photon emission is a minority relaxation pathway. Such studies are important to understand how the microenvironment of a chromophore influences excited state charge transfer processes.
Graphical Abstract ?
  相似文献   

9.
Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit “unfolding” to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein’s size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size “contractions” seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes.
Graphical Abstract ?
  相似文献   

10.
Diagnostic techniques for low-pressure, cold plasmas have mostly been limited to emission and mass spectrometry. Herein, the techniques of gas-phase electron paramagnetic resonance and laser-induced fluorescence spectroscopy are briefly reviewed. Particular attention is paid to their attributes which make them good candidates for plasma diagnostic tools. It is found that gas-phase electron paramagnetic resonance can be used to determine and monitor the absolute concentration of a number of important plasma species, e.g., free radicals and atoms. Laser-induced fluorescence can also monitor, with even more sensitivity, but perhaps not so well absolutely, the concentrations of many plasma species, e.g., free radicals, metastable excited states, and molecular ions.  相似文献   

11.
The electrochemical behavior of Pd–Pt–Rh alloys has been investigated using cyclic voltammetry (CV). The alloys were prepared by electrochemical codeposition as limited volume electrodes (less than 1 m in thickness). The morphology of the alloy surface and bulk compositions were examined by the SEM/EDAX method. Surface oxides generation (oxygen adsorption) and oxides reduction (oxygen desorption) currents together with hydrogen adsorption and hydrogen absorption signals can be distinguished on CV curves. During potential cycling through the full hydrogen–oxygen potential range Rh and Pd are preferentially dissolved, which is reflected in a dramatic transformation in the voltammogram shape. The composition changes involve not only the surface but also some atomic layers beneath the surface.  相似文献   

12.
Ionized N-aryl-3,4-diphenylisoxazol-5(2H)-one isomers react unimolecularly in the gas-phase mainly via carbon dioxide elimination. The observed ring contraction closely resembles the reported behaviour of the corresponding neutral compounds in solution. The reacting species were produced by electron impact (EI) and field ionization (FI) and analyzed by MS/MS through the determination of specific metastable ions (MI) decompositions.  相似文献   

13.
The interaction of atomic hydrogen with clean and deuterium precovered Ru(1010) was studied by means of temperature-programmed desorption (TPD) spectroscopy. Compared to molecular hydrogen experiments, after exposure of the clean surface to gas-phase atomic hydrogen at 90 K, two additional peaks grow in the desorption spectra at 115 and 150 K. The surface saturation coverage, determined by equilibrium between abstraction and adsorption reactions, is 2.5 monolayers. Preadsorbed deuterium abstraction experiments with gas-phase atomic hydrogen show that a pure Eley-Rideal mechanism is not involved in the process, while a hot atom (HA) kinetics describes well the reaction. By least-squares fitting of the experimental data, a simplified HA kinetic model yields an abstraction cross section value of 0.5 +/- 0.2 angstroms2. The atomic hydrogen interaction with an oxygen precovered surface was also studied by means of both TPD and x-ray photoelectron spectroscopy: oxygen hydrogenation and water production take place already at very low temperature (90 K).  相似文献   

14.
Gas and ion transport in the capillary-skimmer subatmospheric interface of a mass spectrometer, which is typically utilized to separate unevaporated micro-droplets from ions, was studied numerically using a two-step approach spanning multiple gas dynamic regimes. The gas flow in the heated capillary and in the interface was determined by solving numerically the Navier-Stokes equation. The capillary-to-skimmer gas/ion flow was modeled through the solution of the full Boltzmann equation with a force term. The force term, together with calculated aerodynamic drag, determined the ion motion in the gap between the capillary and skimmer. Three-dimensional modeling of the impact of the voltage applied to the Einzel lens on the transmission of doubly charged peptide ions through the skimmer orifice was compared with experimental data obtained in the companion study. Good agreement between measured and computed signals was observed. The numerical results indicate that as many as 75% of the ions that exit from the capillary are lost on the conical surface of the skimmer or capillary outer surface because of the electrostatic force and plume divergence.
Figure
?  相似文献   

15.
Summary Volatilization of arsenic, selenium and antimony for sample introduction in atomic absorption spectrometry has been performed by pumping an acidic sample through an anion exchanger in the tetrahydroborate (III) form packed as a bed in the liquid channel of a gas-liquid separation membrane cell. The hydrides generated in the heterogeneous reaction between bound tetrahydroborate (III) ions and the analytes are rapidly transferred with the aid of the concomitantly generated hydrogen gas through the gas-permeable membrane into the gas phase and swept to the spectrometer by an additional hydrogen gas flow. This instant transfer of the hydrides to the gas phase kinetically discriminates the reaction of the hydride with metal borides and metal colloids, whose formation by reaction with tetra-hydroborate (III) is slower than the hydride reaction. The susceptibility to interference by transition metal ions is thus markedly reduced, as compared with both batch hydride generation methods and a previously presented heterogeneous reaction scheme. The detection limits for arsenic, selenium, and antimony were 1.2, 3.7, and 10 g/l, respectively. The calibration graphs were linear from the detection limit up to 125 g/l for arsenic, 150 g/l for selenium, and 250 g/l for antimony. The relative standard deviations at concentration levels of 10 and 100 g/l were 1.8 and 0.7% for arsenic and 2.3 and 1.2% for selenium. Corresponding figures for 50 and 100 g/l antimony were 2.5 and 1.6%.  相似文献   

16.
An astonishingly simple new method to produce gas-phase ions of small molecules as well as proteins from the solid state under cold vacuum conditions is described. This matrix assisted ionization vacuum (MAIV) mass spectrometry (MS) method produces multiply charged ions similar to those that typify electrospray ionization (ESI) and uses sample preparation methods that are nearly identical to matrix-assisted laser desorption/ionization (MALDI). Unlike these established methods, MAIV does not require a laser or voltage for ionization, and unlike the recently introduced matrix assisted ionization inlet method, does not require added heat. MAIV-MS requires only introduction of a crystalline mixture of the analyte incorporated with a suitable small molecule matrix compound such as 3-nitrobenzonitrile directly to the vacuum of the mass spectrometer. Vacuum intermediate pressure MALDI sources and modified ESI sources successfully produce ions for analysis by MS with this method. As in ESI-MS, ion formation is continuous and, without a laser, little chemical background is observed. MAIV, operating from a surface offers the possibility of significantly improved sensitivity relative to atmospheric pressure ionization because ions are produced in the vacuum region of the mass spectrometer eliminating losses associated with ion transfer from atmospheric pressure to vacuum. Mechanistic aspects and potential applications for this new ionization method are discussed.   相似文献   

17.
Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate (in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract.
Graphical Abstract ?
  相似文献   

18.
In this work we have studied the steady-state reaction of molecular and atomic hydrogen with oxygen on a Pd(111) surface at a low total pressure (<10(-7) mbar) and at sample temperatures ranging from 100 to 1100 K. Characteristic features of the water formation rate Phi(pH2; pO2; TPd) are presented and discussed, including effects that are due to the use of gas-phase atomic hydrogen for exposure. Optimum impingement ratios (OIR) for hydrogen and oxygen for water formation and their dependence on the sample temperature have been determined. The occurring shift in the OIR could be ascribed to the temperature dependence of the sticking coefficients for hydrogen (SH2) and oxygen (SO2) on Pd(111). Using gas-phase atomic hydrogen for water formation leads to an increase of the OIR, suggesting that hydrogen abstraction via hot-atom reactions competes with H2O formation. The velocity distributions of the desorbing water molecules formed on the Pd(111) surface have been measured by time-of-flight spectroscopy under various conditions, using either gas-phase H atoms or molecular H2 as reactants. In all cases, the desorbing water flux could be represented by a Maxwellian distribution corresponding to the surface temperature, thus giving direct evidence for a Langmuir-Hinshelwood mechanism for water formation on Pd(111).  相似文献   

19.
The gas-phase reactions between Ca(2+) and glycine ([Ca(gly)](2+)) have been investigated through the use of mass spectrometry techniques and B3-LYP/cc-pWCVTZ density functional theory computations. The major peaks observed in the electrospray MS/MS spectrum of [Ca(gly)](2+) correspond to the formation of the [Ca,C,O(2),H](+), NH(2)CH(2) (+), CaOH(+), and NH(2)CH(2)CO(+) fragment ions, which are produced in Coulomb explosion processes. The computed potential energy surface (PES) shows that not only are these species the most stable product ions from a thermodynamic point of view, but they may be produced with barriers lower than for competing processes. Carbon monoxide is a secondary product, derived from the unimolecular decomposition of some of the primary ions formed in the Coulomb explosions. In contrast to what is found for the reactions of Ca(2+) with urea ([Ca(urea)](2+)), minimal unimolecular losses of neutral fragments are observed for the gas-phase fragmentation processes of [Ca(gly)](2+), which is readily explained in terms of the topological differences between their respective PESs.  相似文献   

20.
Ionization processes have been discovered by which small and large as well as volatile and nonvolatile compounds are converted to gas-phase ions when associated with a matrix and exposed to sub-atmospheric pressure. Here, we discuss experiments further defining these simple and unexpected processes. Charge separation is found to be a common process for small molecule chemicals, solids and liquids, passed through an inlet tube from a higher to a lower pressure region, with and without heat applied. This charge separation process produces positively- and negatively-charged particles with widely different efficiencies depending on the compound and its physical state. Circumstantial evidence is presented suggesting that in the new ionization process, charged particles carry analyte into the gas phase, and desolvation of these particles produce the bare ions similar to electrospray ionization, except that solid particles appear likely to be involved. This mechanistic proposition is in agreement with previous theoretical work related to ion emission from ice.
Graphical Abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号