首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The entanglement dynamics of three-qubit states under a general XY spin-chain environment which can exhibit a quantum phase transition is investigated by using negativity as entanglement measure. Our results imply that the entanglement evolution depends not only on the states of concern but also on the system-environment coupling, the anisotropy parameter, the size of the environment, and the strength of the external field applied to the environment. For the cases under study, we find that the entanglement decay is enhanced by quantum phase transition under weak coupling. The conditions to identify quantum decoherence-free subspaces have been discussed.  相似文献   

2.
The time evolution of entanglement and coherence of two-qutrit states under an XY quantum environment which can exhibit a quantum phase transition has been analyzed. From our results, we find that the quantum phase transition can enhance the entanglement decay and coherence loss when the system is weakly coupled to the environment. Furthermore, the effect of the anisotropy parameter and the size of the environment on entanglement dynamics and coherence has also been discussed.  相似文献   

3.
In this paper, we use the Weisskopf-Wigner theory to study the entanglement in the state of the free-space radiation field produced from vacuum due to atomic decay. We show how bipartite entanglement is shared between different partitions of the radiation modes. We investigate the role played by the size of the partitions and their detuning with the decaying atom. The dynamics of the atom-field entanglement during the atomic decay is also briefly discussed. From this dynamics, we assert that such entanglement is the physical quantity that fix the statistical atomic decay time.  相似文献   

4.
We investigate the entanglement of an open tripartite system where a cavity field mode in thermal equilibrium is off-resonantly coupled with two atoms that are simultaneously driven by a resonant coherent field. For moderately detuned atom-field coupling and strong atomic driving we show the generation, at given interaction times and for low enough cavity decay rates, of atomic Bell states and of Bell state superpositions relevant for quantum gates implementation. The system can oscillate between bi-separable and fully separable states. Also we describe the distribution of quantum correlations between the atom-atom and the two atom-field subsystems. In the dispersive coupling regime with strongly driven atoms we show the generation of nearly stationary Bell states which remain protected from cavity dissipation.  相似文献   

5.
The atomic decay for a two-level atom interacting with a single mode of electromagnetic tield is considered. For a chosen initial state, the exact solution of the master equation is found. Therefore, effect of the atomic damping on entanglement (purity loss), degree of entanglement by the negativity, mutual information and atomic coherence through the master equation are studied.  相似文献   

6.
The evolution of entanglement in a one-dimensional Ising chain with both two-body and three-body interactions, under two types of initial states, is numerically simulated. We analyse three problems concerning the dynamics of pairwise entanglement: (i) the possibility of generating large entanglement from an initial separable state by the use of a selective irradiation scheme; (ii) the effect of three-body interaction on the generation of entanglement from an initial separable state; (iii) the effect of three-body interaction on the decay of the entanglement from a state with only (m,n)-pair maximal entangled, and the rest in product form. It is shown that a large pairwise concurrence Cmn can be obtained when the resonant, transverse radio-frequency fields are selectively switched on from the mth to nth spins. Three-body interaction will decrease the oscillation amplitude of the nearest neighbour concurrence, while the oscillation amplitude of remote pairwise concurrence will be greatly increased with the consideration of three-body interactions. For an initial (m,n)-pair maximal entangled state, a slow decay of the pairwise concurrence Cmn is found with the introduction of three-body interactions.  相似文献   

7.
With the consideration of three-body interaction, dynamics of pairwise entanglement in spin chains is studied. The dependence of pairwise entanglement dynamics on the type of coupling, and distance between the spins is analyzed in a finite chain for different initial states. It is found that, for an Ising chain, three-body interactions are not in favor of preparing entanglement between the nearest neighbor spins, while three-body interactions are favorable for creating entanglement between remote spins from a separable initial state. For an isotropic Heisenberg chain, the pairwise concurrence will decrease when three-body interactions are considered both for a separable initial state and for a maximally entangled initial state, however, three-body interactions will retard the decay of the concurrence in an Ising chain when the initial state takes the maximally entangled state.  相似文献   

8.
We investigate the entanglement dynamics and decoherence of a three-qubit system under a quantum spin environment at a finite temperature in the thermodynamics limit. For the case under study, we find the evolution of pairwise entanglement depends not only on the initial states but also on the parameters related to the system and the spin environment. In addition, an undesirable entanglement sudden death occurs in the process of entanglement evolution, and this effect can be controlled by the coupling constant between two qubits, external magnetic field, and the interaction between the system and the environment.  相似文献   

9.
We use non-maximally entangled states (NMESs) to simulate an entangling unitary operator (EUO) with a certain probability. Given entanglement resources, the probability of the success we achieve is a decreasing function of the parameters of the EUO. Given an EUO, for certain entanglement resources the result is optimal, i.e., the probability obtains a maximal vaiue, and for optimal result higher parameters of the EUO match more amount of entanglement resources. The probability of the success we achieve is higher than the known results under some condition.  相似文献   

10.
Entanglement dynamics of the N-qubit XY model in thermal and dephasing environments are investigated by solving the Lindblad form of the master equation. Analytical solutions for the two-qubit case and numerical solutions for the multi-qubit case are obtained. For the two-qubit case, our results revealed two main features for entanglement evolution from different initial states. First, the thermal reservoir always induces degradation of the entanglement, and the entanglement may undergo sudden death during certain intervals of the evolution time. Second, the dephasing environment induces damped oscillation of the entanglement for initially separable states and mixed states with relative large values of Δ or J; however, it always induces exponentially decay of the entanglement for the initial Bell states. For the multi-qubit case, our results show that the entanglement decreases monotonically as the time evolves for the initial W state, and behaves as damped oscillation for the initial “one-particle” state. Particularly, for system with large number of qubits, the curves of the concurrence C12 with different N are almost overlapped in dephasing environment.  相似文献   

11.
We propose a physical realization of symmetric telecloning machine for spin quantum states. The concept of area average fidelity is introduced to describe the telecloning quality. It is indicated that for certain input states this quantity may come to an enough high level to satisfy the need of quantum information processing. We also study the properties of entanglement distribution via the spin chain for arbitrary two-qubit entangled pure states as inputs and find that the decay ratio of entanglement for the output states is only determined by the parameters of spin chain and waiting time, independent of the initial input states.  相似文献   

12.
We propose a new scheme to achieve the tripartite entanglement based on the standard criteria [Phys. Rev. A 67(2003) 052315] in a inverse-tripod atomic system. In our scheme, the atomic coherence is introduced by two microwave fields which drive the upper three levels of atom. By numerically simulating the dynamics of system, we investigate the generation and evolution of entanglement in the presence of atom and cavity decay. As a result, the present research provides an efficient approach to achieve fully tripartite entanglement with different frequencies and initial states for each entangled mode, which may have impact on the progress of multicolored multi-notes quantum information networks.  相似文献   

13.
Thermal entanglement of the two-qubit XXZ model under magnetic fields in arbitrary directions is studied. Both the uniform and nonuniform fields are addressed. For the ferromagnetic case, a magnetic field perpendicular to the z-axis helps to enhance the entanglement or slows down the decrease of the entanglement. For the antiferromagnetic case, there is the revival phenomenon when the magnetic field is uniform and no such phenomenon when the field is uniform in the z-direction and a staggered type in the x-axis.  相似文献   

14.
To implement long-distance quantum communication, quantum repeaters have been proposed. The distribution and storage of quantum entanglement are essential to implement quantum repeaters. Here, we propose a new quantum repeaters protocol which is based on single atom-cavity QED. We use simple long-life two-level atoms to store quantum entanglement unlike three-level atoms which are commonly used in other quantum repeaters proposals. The property of long life-time (T1) and transverse decay time (T2) between excited level and ground level, such as rare-earth atoms, may store quantum entanglement as long as possible. Modulations of cavity mode and rate of coupling between cavity mode and output mode are also key steps to our scheme. And the efficiency of our protocol is analyzed by quantum trajectory theory.  相似文献   

15.
We present a scheme for entanglement concentration of an unknown atomic non-maximally entangled GHZ state via cavity decay. In the scheme, the atom trapped in a cavity is manipulated by laser field, so the maximally entangled GHZ state can be obtained by performing certain operation, which can be realized by illuminating the atom in a cavity. Our method is robust against spontaneous atomic decay.  相似文献   

16.
Dense coding of multi-atom entangled states in cavity QED is studied. If the quantum channel is generalized GHZ states, dense coding can be directly realized in a simply way. As for the partially entangled pure states, we propose a feasible protocol for entanglement concentration, and the emciency of information transmitted is calculated. The schemes are insensitive to the cavity decay and the field state, due to the fact that the interaction here is a large-detuned one between atoms and the cavity.  相似文献   

17.
The two atoms in the ion trap are entangled by the interaction with an external excited atom. The evolution of the entanglement is analytically derived without the decoherence. Considering the spontaneous decay from the environment, the evolution of the entanglement is similar to the damping Rabi oscillation. The generation of entanglement is induced by the dipole-dipole type interaction of atoms. It is found that the entanglement of two trapped atoms is robust with the uniform interaction with the external atom. The collective spontaneous emission from the coupling between the atoms may enhance the entanglement.  相似文献   

18.
We present a classification of three-qubit states based in their three-qubit and reduced two-qubit entanglements. For pure states these criteria can be easily implemented, and the different types can be related with sets of equivalence classes under local unitary operations. For mixed states characterization of full tripartite entanglement is not yet solved in general; some partial results will be presented here.  相似文献   

19.
With the two forms of the quantum entanglement control, the quantum entanglement swapping and preservation are demonstrated in a three-qubit nuclear magnetic resonance quantum computer. The pseudopure state is prepared to represent the quantum entangled states through macroscopic signals. Entanglement swapping is directly realized by a swap operation. By controlling the interactions between the system and its environment,we can preserve an initial entangled state for a longer time. The experimental results are in agreement with the experiment.  相似文献   

20.
We first assume that there are only bipartite noisy qubit channels in a given multipartite system, and present three methods to distill the general Greenberger-Horne-Zeilinger state. By investigating the methods, we show that multipartite entanglement distillation by bipartite entanglement distillation has higher yield than ones in the previous multipartite entanglement distillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号