首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

2.
Gu ZG  Yang QF  Liu W  Song Y  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2006,45(22):8895-8901
The reactions of [M(II)(Tpm(Me))(H2O)3]2+ (M = Ni, Co, Fe; Tpm(Me) = tris(3,5-dimethyl-1-pyrazoyl)methane) with [Bu4N][(Tp)Fe(III)(CN)3] (Bu4N+ = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate) in MeCN-Et2O afford three pentanuclear cyano-bridged clusters, [(Tp)3(Tpm(Me))2Fe(III)3M(II)2(CN)9]ClO4.15H2O (M = Ni, 1; M = Co, 2) and [(Tp)3(Tpm(Me))2Fe(III)3Fe(II)2(CN)9]BF4.15H2O (3). Single-crystal X-ray analyses reveal that they show the same trigonal bipyramidal structure featuring a D3h-symmetry core, in which two opposing Tpm(Me)-ligated M(II) ions situated in the two apical positions are linked through cyanide bridges to an equatorial triangle of three Tp-ligated Fe(III) (S = 1/2) centers. Magnetic studies for complex 1 show ferromagnetic coupling giving an S = 7/2 ground state and an appreciable magnetic anisotropy with a negative D(7/2) value equal to -0.79 cm(-1). Complex 2 shows zero-field splitting parameters deducted from the magnetization data with D = -1.33 cm(-1) and g = 2.81. Antiferromagnetic interaction was observed in complex 3.  相似文献   

3.
The structures, luminescent and magnetic properties of three series of coordination polymers with formulas-{[Fe(3)Ln(2)(L(1))(6)(H(2)O)(6)]·xH(2)O}(n) (Ln = Pr-Er; 1-9), {[Co(3)Ln(2)(L(1))(6)(H(2)O)(6)]·yH(2)O}(n) (Ln = Pr-Dy, Yb; 10-17) and {[Co(2)Ln(L(2))(HL(2))(2)(H(2)O)(7)]·zH(2)O}(n) (Ln = Eu-Yb; 18-25) (H(2)L(1) = pyridine-2,6-dicarboxylic acid, H(3)L(2) = 4-hydroxyl-pyridine-2,6-dicarboxylic acid) were systematically explored in this contribution. [Fe(II)(HS)-L(1)-Ln(III)] (1-9) and [Co(II)-L(1)-Ln(III)] (10-17) series are isostructural, and display 3D porous networks with 1D nanosized channels constructed by Fe/Co-OCO-Ln linkages. Furthermore, two types of "water" pipes are observed in 1D channels. [Co(II)-L(2)-Ln(III)] (18-25) series exhibit 2D open frameworks based on double-stranded helical motifs, which are further assembled into 3D porous structures by intermolecular hydrogen bonds between hydroxyl groups. The variety of the resulting structures is mainly due to the HO-substitution effect. These 3D coordination polymers show considerably high thermal stability, and do not decomposed until 400 °C. The high-spin Fe(II) ion in [Fe(II)(HS)-L(1)-Ln(III)] was confirmed by X-ray photoelectron spectroscopy, M?ssbauer spectroscopy and magnetic studies. The luminescent spectra of coordination polymers associated with Sm(III), Eu(III), Tb(III) and Dy(III) were systematically investigated, and indicate that different d-metal ions in d-f systems may result in dissimilar luminescent properties. The magnetic properties of [Fe(II)(HS)-L(1)-Ln(III)] (3, 6, 7, 9, 13), [Co(II)-L(1)-Ln(III)] (15-17) and [Co(II)-L(2)-Ln(III)] (19-24) coordination polymers were also studied, and the χ(M)T values decrease with cooling. For the single ion behavior of Co(II) and Ln(III) ions, the magnetic coupling nature between Fe(II)(HS)/Co(II) and Ln(III) ions cannot be clearly depicted as antiferromagnetic coupling.  相似文献   

4.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

5.
A series of heterobimetallic complexes of the type [Fe(III)M(II)L(&mgr;-OAc)(OAc)(H(2)O)](ClO(4)).nH(2)O (2-5) and [{Fe(III)Co(III)L(&mgr;-OAc)(OAc)}(2)(&mgr;-O)](ClO(4))(2).3H(2)O (6) where H(2)L is a tetraaminodiphenol macrocyclic ligand and M(II) = Zn(2), Ni(3), Co(4), and Mn(5) have been synthesized and characterized. The (1)H NMR spectrum of 6 exhibits all the resonances between 1 and 12 ppm. The IR and UV-vis spectra of 2-5 indicate that in all the cases the metal ions have similar coordination environments. A disordered crystal structure determined for 3 reveals the presence of a (&mgr;-acetate)bis(&mgr;-phenoxide)-Ni(II)Fe(III) core, in which the two metal ions have 6-fold coordination geometry and each have two amino nitrogens and two phenolate oxygens as the in-plane donors; aside from the axial bridging acetate, the sixth coordination site of nickel(II) is occupied by the unidentate acetate and that of iron(III) by a water molecule. The crystal structure determination of 6 shows that the two heterobinuclear Co(III)Fe(III) units are bound by an Fe-O-Fe linkage. 6 crystallizes in the orthorhombic space group Ibca with a = 17.577(4) ?, b = 27.282(7) ?, c = 28.647(6) ?, and Z = 8. The two iron(III) centers in 6 are strongly antiferromagnetically coupled, J = -100 cm(-1) (H = -2JS(1).S(2)), whereas the other two S(1) = S(2) = (5)/(2) systems, viz. [Fe(2)(III)(HL)(2)(&mgr;-OH)(2)](ClO(4))(2) (1) and the Fe(III)Mn(II) complex (5), exhibit weak antiferromagnetic exchange coupling with J = -4.5 cm(-1) (1) and -1.8 cm(-1) (5). The Fe(III)Ni(II) (3) and Fe(III)Co(II) (4) systems, however, exhibit weak ferromagnetic behavior with J = 1.7 cm(-1) (3) and 4.2 cm(-1) (4). The iron(III) center in 2-5 exhibits quasi-reversible redox behavior between -0.44 and -0.48 V vs Ag/AgCl associated with reduction to iron(II). The oxidation of cobalt(II) in 4 occurs quasi-reversibly at 0.74 V, while both nickel(II) and manganese(II) in 3 and 5 undergo irreversible oxidation at 0.85 V. The electrochemical reduction of 6 leads to the generation of 4.  相似文献   

6.
Polypyridyl complexes of Co decorated with 350-Da polyether chains (Co(350)(2+)) form molten phases of nucleic acids when paired with DNA counterions (Co(350)DNA) or 25-mer oligonucleotides. Analysis of voltammetry and chronoamperometry of mixtures of these phases with complexes having ClO(4)(-) counterions (Co(350)(ClO(4))(2)) and no other diluent provides charge transport rates from the oxidation and reduction currents for the complexes. As the mole fraction of the Co(350)(ClO(4))(2) complex in the mixture is varied from ca. 0.25 to 1, the physical diffusion constants derived from the Co(III/II) wave increase from 1 x 10(-11) cm(2)/s to 5 x 10(-10) cm(2)/s, and apparent diffusion constants dominated by the Co(II/I) electron self-exchange increase from 1 x 10(-10) cm(2)/s to 2 x 10(-8) cm(2)/s. Pure Co(350)DNA melts, containing no Co(350)(ClO(4))(2) complex, do not exhibit recognizable voltammetric waves; DNA suppresses the Co(II/I) electron transfer reactions of Co complexes for which it is the counterion. There are therefore two microscopically distinct kinds of Co(350) complexes, those with DNA and those with ClO(4)(-) counterions, with respect to their Co(II/I) electron-transfer dynamics, leading to percolative behavior in their mixtures. The electron-transfer rates of the Co(II/I) couple are controlled by the diffusive relaxation of the ionic atmosphere around the reaction pair, and the inactivity of the bound Co complexes can be attributed to the very low mobility of the anionic phosphate groups in the DNA counterion. Substitution of sulfonated polystyrene for DNA produced similar results, suggesting that this phenomenon is general to other polymer counterions of low mobility. We conclude that the measured Co(II/I) charge transport and electron-transfer rate constants reflect more the diffusive mobility of the perchlorate counterion than the intrinsic Co(II/I) electron hopping rate.  相似文献   

7.
A comparison of the electrochemical properties of a series of dinuclear complexes [M(2)(L)(RCO(2))(2)](+) with M = Mn or Co, L = 2,6-bis(N,N-bis-(2-pyridylmethyl)-sulfonamido)-4-methylphenolato (bpsmp(-)) or 2,6-bis(N,N-bis(2-pyridylmethyl)aminomethyl)-4-tert-butylphenolato (bpbp(-)) and R = H, CH(3), CF(3) or 3,4-dimethoxybenzoate demonstrates: (i) The electron-withdrawing sulfonyl groups in the backbone of bpsmp(-) stabilize the [M(2)(bpsmp)(RCO(2))(2)](+) complexes in their M(II)(2) oxidation state compared to their [M(2)(bpbp)(RCO(2))(2)](+) analogues. Manganese complexes are stabilised by approximately 550 mV and cobalt complexes by 650 mV. (ii) The auxiliary bridging carboxylato ligands further attenuate the metal-based redox chemistry. Substitution of two acetato for two trifluoroacetato ligands shifts redox couples by 300-400 mV. Within the working potential window, reversible or quasi-reversible M(II)M(III)? M(II)(2) processes range from 0.31 to 1.41 V for the [Co(2)(L)(RCO(2))(2)](+/2+) complexes and from 0.54 to 1.41 V for the [Mn(2)(L)(RCO(2))(2)](+/2+) complexes versus Ag/AgCl for E(M(II)M(III)/M(II)(2)). The extreme limits are defined by the complexes [M(2)(bpbp)(CH(3)CO(2))(2)](+) and [M(2)(bpsmp)(CF(3)CO(2))(2)](+) for both metal ions. Thus, tuning the ligand field in these dinuclear complexes makes possible a range of around 0.9 V and 1.49 V for the one-electron E(M(II)M(III)/M(II)(2)) couple of the Mn and Co complexes, respectively. The second one-electron process, M(II)M(III)? M(III)(2) was also observed in some cases. The lowest potential recorded for the E°(M(III)(2)/M(II)M(III)) couple was 0.63 V for [Co(2)(bpbp)(CH(3)CO(2))(2)](2+) and the highest measurable potential was 2.23 V versus Ag/AgCl for [Co(2)(bpsmp)(CF(3)CO(2))(2)](2+).  相似文献   

8.
Reaction of iron salts with three tripodal imidazole ligands, H(3)(1), H(3)(2), H(3)(3), formed from the condensation of tris(2-aminoethyl)amine (tren) with 3 equiv of an imidazole carboxaldehyde yielded eight new cationic iron(III) and iron(II), [FeH(3)L](3+or2+), and neutral iron(III), FeL, complexes. All complexes were characterized by EA(CHN), IR, UV, M?ssbauer, mass spectral techniques and cyclic voltammetry. Structures of three of the complexes, Fe(2).3H(2)O (C(18)H(27)FeN(10)O(3), a = b = c = 20.2707(5), cubic, I3d, Z = 16), Fe(3).4.5H(2)O (C(18)H(30)FeN(10)O(4.5), a = 20.9986(10), b = 11.7098(5), c = 19.9405(9), beta = 109.141(1), monoclinic, P2(1)/c), Z = 8), and [FeH(3)(3)](ClO(4))(2).H(2)O (C(18)H(26)Cl(2)FeN(10)O(9), a = 9.4848(4), b = 23.2354(9), c = 12.2048(5), beta = 111.147(1) degrees, monoclinic, P2(1)/n, Z = 4) were determined at 100 K. The structures are similar to one another and feature an octahedral iron with facial coordination of imidazoles and imine nitrogen atoms. The iron(III) complexes of the deprotonated ligands, Fe(1), Fe(2), and Fe(3), are low-spin while the protonated iron(III) cationic complexes, [FeH(3)(1)](ClO(4))(3) and [FeH(3)(2)](ClO(4))(3), are high-spin and spin-crossover, respectively. The iron(II) cationic complexes, [FeH(3)(1)]S(4)O(6), [FeH(3)(2)](ClO(4))(2), [FeH(3)(3)](ClO(4))(2), and [FeH(3)(3)][B(C(6)H(5))(4)](2) exhibit spin-crossover behavior. Cyclic voltammetric measurements on the series of complexes show that complete deprotonation of the ligands produces a negative shift in the Fe(III)/Fe(II) reduction potential of 981 mV on average. Deprotonation in air of either cationic iron(II) or iron(III) complexes, [FeH(3)L](3+or2+), yields the neutral iron(III) complex, FeL. The process is reversible for Fe(3), where protonation of Fe(3) yields [FeH(3)(3)](2+).  相似文献   

9.
A three-dimensional mixed-valence iron complex with NiAs-type topology, [(Fe(III)(3)O)Fe(II)(TA)(6)(H(2)O)(3)].(ClO(4))(2)(NO(3))(EtOH)(H(2)O)(2) (1, HTA = tetrazole-1H-acetic acid), shows spin-crossover behavior that was characterized via variable-temperature crystal structures, M?ssbauer spectra and magnetic susceptibilities, the pressure effects on the transition behavior were also studied.  相似文献   

10.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

11.
Two new dinucleating ligands 1,2,4,5-tetrakis(2-pyridinecarboxamido)benzene, H(4)(tpb), and 1,2,4,5-tetrakis(4-tert-butyl-2-pyridinecarboxamido)benzene, H(4)(tbpb), have been synthesized, and the following dinuclear cyano complexes of cobalt(III) and iron(III) have been isolated: Na(2)[Co(III)(2)(tpb)(CN)(4)] (1); [N(n-Bu)(4)](2)[Co(III)(2)(tbpb)(CN)(4)] (2); [Co(III)(2)(tbpb(ox2))(CN)(4)] (3); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(N(3))(4)] (4); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(CN)(4)] (5); [N(n-Bu)(4)](2)[Fe(III)(2)(tbpb)(CN)(4)] (6). Complexes 2-4 and 6 have been structurally characterized by X-ray crystallography at 100 K. From electrochemical and spectroscopic (UV-vis, IR, EPR, M?ssbauer) and magnetochemical investigations it is established that the coordinated central 1,2,4,5-tetraamidobenzene entity in the cyano complexes can be oxidized in two successive one-electron steps yielding paramagnetic (tbpb(ox1))(3)(-) and diamagnetic (tbpb(ox2))(2)(-) anions. Thus, complex 6 exists in five characterized oxidation levels: [Fe(III)(2)(tbpb(ox2))(CN)(4)](0) (S = 0); [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Fe(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Fe(III)Fe(II)(tbpb)(CN)(4)](3)(-) (S = (1)/(2)); [Fe(II)(2)(tbpb)(CN)(4)](4)(-) (S = 0). The iron(II) and (III) ions are always low-spin configurated. The electronic structure of the paramagnetic iron(III) ions and the exchange interaction of the three-spin system [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) are characterized in detail. Similarly, for 2 three oxidation levels have been identified and fully characterized: [Co(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Co(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Co(III)(2)(tbpb(ox2))(CN)(4)](0). The crystal structures of 2 and 3 clearly show that the two electron oxidation of 2 yielding 3 affects only the central tetraamidobenzene part of the ligand.  相似文献   

12.
The non-symmetric imide ligand Hpypzca (N-(2-pyrazylcarbonyl)-2-pyridinecarboxamide) has been deliberately synthesised and used to produce nine first row transition metal complexes: [M(II)(pypzca)(2)], M = Zn, Cu, Ni, Co, Fe; [M(III)(pypzca)(2)]Y, M = Co and Y = BF(4), M = Fe and Y = ClO(4); [Cu(II)(pypzca)(H(2)O)(2)]BF(4), [Mn(II)(pypzca)(Cl)(2)]HNEt(3). These are the first deliberately prepared complexes of a non-symmetric imide ligand. X-ray crystal structures of [Cu(II)(pypzca)(2)]·H(2)O, [Co(II)(pypzca)(2)], [Co(III)(pypzca)(2)]BF(4), [Cu(II)(pypzca)(H(2)O)(2)]BF(4)·H(2)O and [Mn(II)(pypzca)Cl(2)]HNEt(3) show that each of the (pypzca)(-) ligands binds in a meridional fashion via the N(3) donors. In the first three complexes, two such ligands are bound such that the 'spare' pyrazine nitrogen atoms are positioned approximately orthogonally to one another and also to the imide oxygen atoms. In MeCN the [M(II/III)(pypzca)(2)](0/+) complexes, where M = Ni, Co or Fe, exhibit one reversible metal based M(II/III) process and two distinct, quasi-reversible ligand based reduction processes, the latter also observed for M(II) = Zn. [Mn(II)(pypzca)Cl(2)]HNEt(3) displays a quasi-reversible oxidation process in MeCN, along with several irreversible processes. Both copper(II) complexes show only irreversible processes. Variable temperature magnetic measurements show that [Fe(III)(pypzca)(2)]ClO(4) undergoes a gradual spin crossover from partially high spin at 298 K (3.00 BM) to fully low spin at 2 K (1.96 BM), and that [Co(II)(pypzca)(2)] remains high spin from 298 to 4 K. All of the complexes are weakly coloured, other than [Fe(II)(pypzca)(2)] which is dark purple and absorbs strongly in the visible region.  相似文献   

13.
Complex [Fe(II)Gd(III){pyCO(OEt)pyCOH(OEt)py}(3)](ClO(4))(2) (1) crystallizes in the Cc space group and contains one hexacoordinate ferrous ion and one enneacoordinate Gd(III) ion. Complex [Fe(2)(II)Gd(III){pyCO(OEt)py}(4)(NO(3))(H(2)O)][Gd(NO(3))(5)](0.5)(ClO(4)) (2) crystallizes in the C2/c space group and contains two hexacoordinate ferrous ions and one octacoordinate Gd(III) ion. Both complexes have been prepared by the metal-assisted ethanolysis of ligands di-2,6-(2-pyridylcarbonyl)pyridine (pyCOpyCOpy, dpcp) and di-2-pyridyl ketone ((py)(2)CO, dpk), which exhibit similar structures. M?ssbauer spectroscopic studies of 2 revealed the presence of two quadrupole-split doublets of equal intensities, each assigned to a ferrous site. These doublets exhibit similar isomer shifts (δ(1) = 1.14 mm s(-1), δ(2) = 1.11 mm s(-1)) but quite different quadrupole splittings (ΔE(Q1) = 3.55 mm s(-1), ΔE(Q2) = 2.74 mm s(-1)). Magnetic studies revealed weak ferromagnetic Fe(II)-Gd(III) interactions for both complexes (J(FeGd) = +0.68 cm(-1), D(Fe) = 12.0 cm(-1) for 1 and J(FeGd) = +0.03 cm(-1), J(FeFe) = -1.73 cm(-1) for 2, according to the -JS(i)S(j) spin-Hamiltonian formalism).  相似文献   

14.
Ferrocenyl terpyridine 3d metal complexes and their analogues, viz. [M(Fc-tpy)(2)](ClO(4))(2) (1-4), [Zn(Ph-tpy)(2)](ClO(4))(2) (5) and [Zn(Fc-dpa)(2)]X(2) (X = ClO(4), 6; PF(6), 6a), where M = Fe(II) in 1, Co(II) in 2, Cu(II) in 3 and Zn(II) in 4, Fc-tpy is 4'-ferrocenyl-2,2':6',2'-terpyridine, Ph-tpy is 4'-phenyl-2,2':6',2'-terpyridine and Fc-dpa is ferrocenyl-N,N-dipicolylmethanamine, are prepared and their DNA binding and photocleavage activity in visible light studied. Complexes 2, 4, 5 and 6a that are structurally characterized by X-ray crystallography show distorted octahedral geometry with the terpyridyl ligands binding to the metal in a meridional fashion, with Fc-dpa in 6a showing a facial binding mode. The Fc-tpy complexes display a charge transfer band in the visible region. The ferrocenyl (Fc) complexes show a quasi-reversible Fc(+)-Fc redox couple within 0.48 to 0.66 V vs. SCE in DMF-0.1 M TBAP. The DNA binding constants of the complexes are ~10(4) M(-1). Thermal denaturation and viscometric data suggest DNA surface binding through electrostatic interaction by the positively charged complexes. Barring the Cu(II) complex 3, the complexes do not show any chemical nuclease activity in the presence of glutathione. Complexes 1-4 exhibit significant plasmid DNA photocleavage activity in visible light via a photoredox pathway. Complex 5, without the Fc moiety, does not show any DNA photocleavage activity. The Zn(II) complex 4 shows a significant PDT effect in HeLa cancer cells giving an IC(50) value of 7.5 μM in visible light, while being less toxic in the dark (IC(50) = 49 μM).  相似文献   

15.
The formation of a cocrystallized coordination compound, [Pd(3)(D-pen)(3)](2)·[M(en)(3)](ClO(4))(3) (D-H(2)pen = D-penicillamine; M = Co(III) or Rh(III)), from [Pd(3)(D-pen)(3)] and [M(en)(3)](ClO(4))(3) is reported. In this compound, only the Δ-configurational [M(en)(3)](3+) cations were incorporated when its racemic (Δ/Λ) isomer was employed. Besides this enantioselective incorporation of complex cations, this compound was found to show the selective incorporation of ClO(4)(-) as the anion species.  相似文献   

16.
Films of neat metal salts with covalently attached oligoether side chains ([Co(bpy(CO(2)MePEG-350)(2))(3)](ClO(4))(2); bpy is 2,2'-bipyridine, and MePEG-350 is methyl-terminated oligomeric ethylene oxide with an average molecular weight of 350 Da) undergo marked changes in physical and electrochemical properties upon contact with CO(2). Electrochemical measurements indicate that the physical diffusion coefficient (D(PHYS)) of the Co(II) species, the observed rate constant for Co(II/I) self-exchange (k(EX)), and the physical diffusion coefficient of the perchlorate counterion (D(ClO4)) increase from 2.4 x 10(-11) to 7.0 x 10(-10) cm(2)/s, 6.8 x 10(5) to 4.5 x 10(6) M(-1) s(-1), and 3.4 x 10(-10) to 4.3 x 10(-9) cm(2)/s, respectively, as CO(2) pressure is increased from 0 to 2000 psi at 23 degrees C. A reduction in activation energy accompanies the enhancement of each of these properties over this pressure range. Increasing CO(2) pressure from ambient to 1000 psi causes the films to swell 13%, and free-volume theory explains the enhanced mass transport properties of the films. The origin of increases in electron-transfer kinetics is considered. Plots of log(k(EX)) versus log(D(PHYS)) and log(k(EX)) versus log(D(ClO4)) are both linear. This suggests that electron self-exchange is controlled by factors that also affect log(D(PHYS)) or log(D(ClO4)). One explanation is based on plasticization of the oligoether side-chain motions by CO(2) that affect ether dipole repolarization and Co complex diffusion rates. A second explanation for the changes in k(EX) is based on control of electron transfer by relaxation of counterions neighbor to the Co complexes, which is measured by D(ClO4). Both explanations represent a kind of solvent dynamics control of k(EX).  相似文献   

17.
The compound [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4) (D(1) = dinucleating ligand with two tris(2-pyridylmethyl)amine units covalently linked in their 5-pyridyl positions by a -CH(2)CH(2)- bridge) selectively promotes cleavage of DNA on oligonucleotide strands that extend from the 3' side of frayed duplex structures at a site two residues displaced from the junction. The minimal requirements for reaction include a guanine in the n (i.e. first unpaired) position of the 3' overhang adjacent to the cleavage site and an adenine in the n position on the 5' overhang. Recognition and strand scission are independent of the nucleobase at the cleavage site. The necessary presence of both a reductant and dioxygen indicates that the intermediate responsible for cleavage is produced by the activation of dioxygen by a copper(I) form of the dinuclear complex. The lack of sensitivity to radical quenching agents and the high level of site selectivity in scission suggest a mechanism that does not involve a diffusible radical species. The multiple metal center exhibits a synergy to promote efficient cleavage as compared to the action of a mononuclear analogue [Cu(II)(TMPA)(H(2)O)](ClO(4))(2) (TMPA = tris(2-pyridylmethyl)amine) and [Cu(OP)(2)](2+) (OP = 1,10-phenanthroline) at equivalent copper ion concentrations. The dinuclear complex, [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4), is even capable of mediating efficient specific strand scission at concentrations where [Cu(OP)(2)](2+) does not detectably modify DNA. The unique coordination and reactivity properties of [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4) are critical for its efficiency and site selectivity since an analogue, [Cu(II)(2)(DO)(Cl(2))](ClO(4))(2), where DO is a dinucleating ligand very similar to D(1), but with a -CH(2)OCH(2)- bridge, exhibits only nonselective cleavage of DNA. The differences in the reactivity of these two complexes with DNA and their previously established interaction with dioxygen suggest that specific strand scission is a function of the orientation of a reactive intermediate.  相似文献   

18.
The reduction of ClO(2) to ClO(2)(-) by aqueous iron(II) in 0.5 M HClO(4) proceeds by both outer-sphere (86%) and inner-sphere (14%) electron-transfer pathways. The second-order rate constant for the outer-sphere reaction is 1.3 x 10(6) M(-1) s(-1). The inner-sphere electron-transfer reaction takes place via the formation of FeClO(2)(2+) that is observed as an intermediate. The rate constant for the inner-sphere path (2.0 x 10(5) M(-1) s(-1)) is controlled by ClO(2) substitution of a coordinated water to give an inner-sphere complex between ClO(2) and Fe(II) that very rapidly transfers an electron to give (Fe(III)(ClO(2)(-))(H(2)O)(5)(2+))(IS). The composite activation parameters for the ClO(2)/Fe(aq)(2+) reaction (inner-sphere + outer-sphere) are the following: DeltaH(r)++ = 40 kJ mol(-1); DeltaS(r)++ = 1.7 J mol(-1) K(-1). The Fe(III)ClO(2)(2+) inner-sphere complex dissociates to give Fe(aq)(3+) and ClO(2)(-) (39.3 s(-1)). The activation parameters for the dissociation of this complex are the following: DeltaH(d)++= 76 kJ mol(-1); DeltaS(d)++= 32 J K(-1) mol(-1). The reaction of Fe(aq)(2+) with ClO(2)(-) is first order in each species with a second-order rate constant of k(ClO2)- = 2.0 x 10(3) M(-1) s(-1) that is five times larger than the rate constant for the Fe(aq)(2+) reaction with HClO(2) in H(2)SO(4) medium ([H(+)] = 0.01-0.13 M). The composite activation parameters for the Fe(aq)(2+)/Cl(III) reaction in H(2)SO(4) are DeltaH(Cl(III))++ = 41 kJ mol(-1) and DeltaS(Cl(III))++ = 48 J mol(-1) K(-1).  相似文献   

19.
The photolytic kinetic properties of a new series of intramolecular bridged alkyl cobaloxime complexes Br(O-C(3)H(6)-(dmgH))(dmgH))Co(III)(2), [H(2)O(O-C(3)H(6)-(dmg))(dmgH(2))]Co(III)[ClO(4)(3), ]Py(O-C(3)H(6)-(dmg))(dmgH(2))[Co(III)]ClO(4)(4), [Bzm(O-C(3)H(6)-(dmg))(dmgH(2))]Co(III)[ClO(4)(5) and ]Im(O-C(3)H(6)-(dmg))(dmgH(2))[Co(III)]ClO(4)(6) and their precursor aqua-(3-bromopropyl)cobaloximes (1) were investigated by UV-Vis spectroscopy. The products of photolytic solutions were characterized by both ESI-MS and (1)H-NMR techniques. Our results revealed a carbon-center radical that is produced from Co-C bond cleavage under photolysis might be linked to the equatorial ligand and thus retained in the proximity of Co(II)-complex. The thermo-gravimetric analysis of complex 2 gives the same conclusion.  相似文献   

20.
The reaction of the neutral binuclear complexes [(R(F))(2)Pt(μ-PPh(2))(2)M(phen)] (phen = 1,10-phenanthroline, R(F) = C(6)F(5); M = Pt, 1; M = Pd, 2) with AgClO(4) or [Ag(OClO(3))(PPh(3))] affords the trinuclear complexes [AgPt(2)(μ-PPh(2))(2)(R(F))(2)(phen)(OClO(3))] (7a) or [AgPtM(μ-PPh(2))(2)(R(F))(2)(phen)(PPh(3))][ClO(4)] (M = Pt, 8; M = Pd, 9), which display an "open-book" type structure and two (7a) or one (8, 9) Pt-Ag bonds. The neutral diphosphine complexes [(R(F))(2)Pt(μ-PPh(2))(2)M(P-P)] (P-P = 1,2-bis(diphenylphosphino)methane, dppm, M = Pt, 3; M = Pd, 4; P-P = 1,2-bis(diphenylphosphino)ethane, dppe, M = Pt, 5; M = Pd, 6) react with AgClO(4) or [Ag(OClO(3))(PPh(3))], and the nature of the resulting complexes is dependent on both M and the diphosphine. The dppm Pt-Pt complex 3 reacts with [Ag(OClO(3))(PPh(3))], affording a silver adduct 10 in which the Ag atom interacts with the Pt atoms, while the dppm Pt-Pd complex 4 reacts with [Ag(OClO(3))(PPh(3))], forming a 1:1 mixture of [AgPdPt(μ-PPh(2))(2)(R(F))(2)(OClO(3))(dppm)] (11), in which the silver atom is connected to the Pt-Pd moiety through Pd-(μ-PPh(2))-Ag and Ag-P(k(1)-dppm) interactions, and [AgPdPt(μ-PPh(2))(2)(R(F))(2)(OClO(3))(PPh(3))(2)][ClO(4)] (12). The reaction of complex 4 with AgClO(4) gives the trinuclear derivative 11 as the only product. Complex 11 shows a dynamic process in solution in which the silver atom interacts alternatively with both Pd-μPPh(2) bonds. When P-P is dppe, both complexes 5 and 6 react with AgClO(4) or [Ag(OClO(3))(PPh(3))], forming the saturated complexes [(PPh(2)C(6)F(5))(R(F))Pt(μ-PPh(2))(μ-OH)M(dppe)][ClO(4)] (M = Pt, 13; Pd, 14), which are the result of an oxidation followed by a PPh(2)/C(6)F(5) reductive coupling. Finally, the oxidation of trinuclear derivatives [(R(F))(2)Pt(II)(μ-PPh(2))(2)Pt(II)(μ-PPh(2))(2)Pt(II)L(2)] (L(2) = phen, 15; L = PPh(3), 16) by AgClO(4) results in the formation of the unsaturated 46 VEC complexes [(R(F))(2)Pt(III)(μ-PPh(2))(2)Pt(III)(μ-PPh(2))(2)Pt(II)L(2)][ClO(4)](2) (17 and 18, respectively) which display Pt(III)-Pt(III) bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号