首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quenching of excited iodine atoms (I(5p5, 2P1/2)) by nitrogen oxides are processes of relevance to discharge-driven oxygen iodine lasers. Rate constants at ambient and elevated temperatures (293-380 K) for quenching of I(2P1/2) atoms by NO2, N2O4, and N2O have been measured using time-resolved I(2P1/2) --> I(2P3/2) 1315 nm emission. The excited atoms were generated by pulsed laser photodissociation of CF3I at 248 nm. The rate constants for I(2P1/2) quenching by NO2 and N2O were found to be independent of temperature over the range examined with average values of (2.9 +/- 0.3) x 10(-15) and (1.4 +/- 0.1) x 10(-15) cm3 s(-1), respectively. The rate constant for quenching of I(2P1/2) by N2O4 was found to be (3.5 +/- 0.5) x 10(-13) cm3 s(-1) at ambient temperature.  相似文献   

2.
Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P1/2) by O atoms and O3 may impact the efficiency of discharge driven iodine lasers. In the present study, we have measured the rate constants for quenching of I(2P1/2) by O(3P) atoms and O3 using pulsed laser photolysis techniques. The rate constant for quenching by O3, (1.8 +/- 0.4) x 10(-12) cm3 s-1, was found to be a factor of 5 smaller than the literature value. The rate constant for quenching by O(3P) was (1.2 +/- 0.2) x 10(-11) cm3 s-1.  相似文献   

3.
The kinetics of the reactions of O- and O2- with O2(a1Deltag) have been studied at 300 K in a selected ion flow tube (SIFT). The O2(a1Deltag) concentrations have been determined using emission at 1270 nm from the O2(a1Deltag, v=0-->X3Sigmag-, v=0) transition measured with an InGaAs detector calibrated against absolute spectrally dispersed emission measurements. The rate constants measured for O- and O2- are 1.1x10(-10) and 6.6x10(-10) cm3 s-1, respectively, with uncertainties of +/-35%. The O2- reaction only produces electrons and can be described as Penning detachment, while the O- reaction has been found to produce both O2- and e-. The O2- branching fraction has a lower limit of approximately 0.30. Comparison of the present results to previous measurements found in the literature provides a resolution to a previous discrepancy in the rate constant values.  相似文献   

4.
Ab initio computational studies were carried out in order to explore the possible mechanisms of quenching of O(2)(a (1)Delta(g)) by O(2)(X (3)Sigma(g) (-)): the self-quenching of O(2)(a (1)Delta(g)) and other energy-transfer processes involving two O(2) molecules. All eighteen states arising from two O(2) molecules in the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) states are considered. After scans at the state-averaged complete active space self-consistent field method to identify possible regions of crossing between states belonging to different asymptotes, complete active state second-order perturbation theory high-symmetry optimization and low-symmetry scans established that four different minima on the seams of crossing (MSXs), arising between the a+a manifold and the X+b manifold and responsible for self-quenching: O(2)(a (1)Delta(g))+O(2)(a (1)Delta(g))-->O(2)(X (3)Sigma(g) (-))+O(2)(b (1)Sigma(g) (+)), have coplanar C(2h) or C(2v) symmetries and are only 0.45 eV barrier relative to the a+a asymptote and energetically easily accessible. The rate constant for this process was estimated based on the Landau-Zener formalism. The MSXs for quenching of O(2)(a (1)Delta(g)) by the ground state O(2)(X (3)Sigma(g) (-)):O(2)(a (1)Delta(g))+O(2)(X (3)Sigma(g) (-))-->O(2)(X (3)Sigma(g) (-))+O(2)(X (3)Sigma(g) (-)) require higher energies and the process is not likely to be important.  相似文献   

5.
The atmospherically relevant chemistry generated by photolysis of I2/O3 mixtures has been studied at 298 K in the pressure range from 10 to 400 hPa by using a laboratory flash photolysis setup combining atomic resonance and molecular absorption spectroscopy. The temporal behaviors of I, I(2), IO, and OIO have been retrieved. Conventional kinetic methods and numerical modeling have been applied to investigate the IO self-reaction and the secondary chemistry. A pressure independent value of k(IO + IO) = (7.6 +/- 1.1) x 10(-11) cm(3) molecule-1 s(-1) has been determined. The pressure dependence of the branching ratios for the I + OIO and IOIO product channels in the IO + IO reaction have been determined and have values of 0.45 +/- 0.10 and 0.44 +/- 0.13 at 400 hPa, respectively. The branching ratios for the 2I + O(2) and I(2) + O(2) product channels are pressure independent with values of 0.09 +/- 0.06 and 0.05 +/- 0.03, respectively. The sensitivity analysis indicates that the isomer IOIO is more thermally stable than predicted by theoretical calculations. A reaction scheme comprising OIO polymerization steps has been shown to be consistent with the temporal behaviors recorded in this study. For simplicity, the rate coefficient has been assumed to be the same for each reaction (OIO)(n) + IO --> (OIO)(n+1), n = 1, 2, 3, 4. The lower limit obtained for this rate coefficient is (1.2 +/- 0.3) x 10(-10) cm(3) molecule(-1) s(-1) at 400 hPa. Evidence for the participation of IO in the polymerization mechanism also has been found. The rate coefficient for IO attachment to OIO and to small polymers has been determined to be larger than (5 +/- 2) x 10(-11) cm(3) molecule(-1) s(-1) at 400 hPa. These results provide supporting evidence for atmospheric particle formation induced by polymerization of iodine oxides.  相似文献   

6.
Pterins belong to a class of heterocyclic compounds present in a wide range of living systems. They participate in relevant biological functions and are involved in different photobiological processes. Dihydropterins are one of the biologically active forms of pterins. The photoinduced production and quenching of singlet oxygen (1O2) by a series of dihydropterins (7,8-dihydrobiopterin (DHBPT), 7,8-dihydroneopterin (DHNPT), 6-formyl-7,8-dihydropterin (FDHPT), sepiapterin (SPT), 7,8-dihydrofolic acid (DHFA), and 7,8-dihydroxanthopterin (DHXPT)) in aqueous solution at physiological pH ( approximately 7) were investigated, and the quantum yields of 1O2 production (PhiDelta) and rate constants of total quenching (kt) of 1O2 were determined. Studied compounds do not produce 1O2 under UV-A irradiation and are very efficient 1O2 quenchers. The chemical reactions between 1O2 and dihydropterin derivatives were investigated, and the corresponding rate constants (kr) were found to be particularly high. The oxidized pterin derivatives, biopterin (BPT), neopterin (NPT), 6-formylpterin (FPT), and folic acid (FA), were identified and quantified during the reaction of 1O2 with DHBPT, DHNPT, FDHPT, and DHFA, respectively. Besides the oxidation of the dihydropyrazine ring to yield the corresponding oxidized pterins, a second oxidation pathway, leading to fragmentation of the dihydropterin and formation of non-pterinic products, was identified. Mechanisms and biological implications are discussed.  相似文献   

7.
Rate constants and product ion distributions for the O- and O2- reactions with O2(a 1Deltag) were measured as a function of temperature from 200 to 700 K. The measurements were made in a selected ion flow tube (SIFT) using a newly calibrated O2(a 1Deltag) emission detection scheme with a chemical singlet oxygen generator. The rate constant for the O2- reaction is approximately 7 x 10(-10) cm3 s-1 at all temperatures, approaching the Langevin collision rate constant. Electron detachment was the only product observed with O2-. The O- reaction shows a positive temperature dependence in the rate constant from 200 to 700 K. The product branching ratios show that almost all of the products at 200 K are electron detachment, with an increasing contribution from the slightly endothermic charge-transfer channel up to 700 K, accounting for 75% of the products at that temperature. The increase in the overall rate constant can be attributed to this increase in the contribution the endothermic channel. The charge-transfer product channel rate constant follows the Arrhenius form, and the detachment product channel rate constant is essentially independent of temperature with a value of approximately 6.1 x 10(-11) cm3 s-1.  相似文献   

8.
9.
The effect of hydrogen on the concentration of singlet oxygen in the a1Δg and b1Σ states, generated from a microwave discharge in O2 and in an O2/Ar mixture, was studied in flow reactors. The addition of hydrogen, in a range of 0.01–1 of concentration of the O2, increased the yields of singlet oxygen by factor of 5–20. In addition to the higher O2 (a and b) concentrations, the addition of hydrogen removed the usual NO2 fluorescence, making observation of the O2(b → X) transition at 762 nm much easier in the flow reactor. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 12–17, 2006  相似文献   

10.
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the important stratospheric reactions Cl(2PJ) + O3 → ClO + O2 and Br(2P3/2) + O3 → BrO + O2 as a function of temperature. The temperature dependence observed for the Cl(2PJ) + O3 reaction is nonArrhenius, but can be adequately described by the following two Arrhenius expressions (units are cm3 molecule?1 s?1, errors are 2σ and represent precision only): ??1(T) = (1.19 ± 0.21) × 10?11 exp [(?33 ± 37)/T] for T = 189–269K and ??1(T) = (2.49 ± 0.38) × 10?11 exp[(?233 ± 46)/T] for T = 269–385 K. At temperatures below 230 K, the rate coefficients determined in this study are faster than any reported previously. Incorporation of our values for ??1(T) into stratospheric models would increase calculated ClO levels and decrease calculated HCl levels; hence the calculated efficiency of ClOx catalyzed ozone destruction would increase. The temperature dependence observed for the (2P3/2) + O3 reaction is adequately described by the following Arrhenius expression (units are cm3 molecule?1 s?1, errors are 2σ and represent precision only): ??2(T) = (1.50 ± 0.16) × 10?1 exp[(?775 ± 30)/T] for T = 195–392 K. While not in quantitative agreement with Arrhenius parameters reported in most previous studies, our results almost exactly reproduce the average of all earlier studies and, therefore, will not affect the choice of ??2(T) for use in modeling stratospheric BrOx chemistry.  相似文献   

11.
The first complex to contain the N(2)O analogue P(2)O as a ligand is the tetranuclear cluster [{Cp*Fe}{Cp"Co}(3)(P(2)O)(PO)(P(2))] (1), which is formed by the oxidation in air of [{Cp*Fe}{Cp"Co}(2)(P(4))(P)] (Cp*=C(5)Me(5); Cp"=1,3-tBu(2)C(5)H(3)). The bent P(2)O ligand is doubly side-on as well as terminally coordinated (sigma,sigma,pi,pi) to the four metal atoms (see picture). In addition, 1 contains a PO and a P(2) ligand.  相似文献   

12.
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of reactions (1)–(4) as a function of temperature. In all cases, the concentration of the excess reagent, i.e., HBr or Br2, was measured in situ in the slow flow system by UV-visible photometry. Heterogeneous dark reactions between XBr (X = H or Br) and the photolytic precursors for Cl(2P) and O(3P) (Cl2 and O3, respectively) were avoided by injecting minimal amounts of precursor into the reaction mixture immediately upstream from the reaction zone. The following Arrhenius expressions summarize our results (errors are 2σ and represent precision only, units are cm3 molecule?1 s?1): ??1 = (1.76 ± 0.80) × 10?11 exp[(40 ± 100)/T]; ??2 = (2.40 ± 1.25) × 10?10 exp[?(144 ± 176)/T]; ??3 = (5.11 ± 2.82) × 10?12 exp[?(1450 ± 160)/T]; ??4 = (2.25 ± 0.56) × 10?11 exp[?(400 ± 80)/T]. The consistency (or lack thereof) of our results with those reported in previous kinetics and dynamics studies of reactions (1)–(4) is discussed.  相似文献   

13.
The N(2)O decomposition kinetics and the product (N(2) and CO(2)) desorption dynamics were studied in the course of a catalyzed N(2)O+CO reaction on Pd(110) by angle-resolved mass spectroscopy combined with cross-correlation time-of-flight techniques. The reaction proceeded steadily above 400 K, and the kinetics was switched at a critical CO/N(2)O pressure ratio. The ratio was about 0.03 at 450 K and reached approximately 0.08 at higher temperatures. Below it, the reaction was first order in CO, and negative orders above it. Throughout the surveyed conditions, the N(2) desorption sharply collimated along about 45 degrees off the normal toward the [001] direction. Desorbing N(2) showed translational temperatures in the range of 2000-5000 K. It is proposed that the decomposition proceeds in N(2)O(a) oriented along the [001] direction. On the other hand, the CO(2) desorption sharply collimated along the surface normal, showing a translational temperature of about 1600 K.  相似文献   

14.
Relaxation rate constants for the collisional deactivation of I (2P1/2) by halogen cyanides were measured by time resolved atomic absorption. The values obtained were (1.2 ± 0.1) × 10?15, (5.2 ± 0.7) × 10?15, and (2.6 ± 0.4) × 10?14 cm3 molecule?1 s?1 for ClCN, BrCN, and ICN, respectively. Quenching efficiencies are discussed in view of the stability of linear molecules to form the transient complex as well as the similarities assumed between halogen cyanides and interhalogen diatomic molecules.  相似文献   

15.
The translational anisotropy and angular momentum polarization of the O(2)(a (1)Delta(g),v = 0;J = 15-27) molecular photofragment produced from the UV photodissociation of O(3) in the range from 270 to 300 nm have been determined using resonance-enhanced multiphoton ionization in conjunction with time-of-flight mass spectrometry. At the shortest photolysis wavelengths used, the fragments exhibit the anisotropic vector correlations expected from a prompt dissociation via the (1)B(2) <--(1)A(1) transition. Deviations from this behavior are observed at longer photolysis wavelengths with, in particular, the angular momentum orientation showing a significant reduction in magnitude. This indicates that the dissociation can no longer be described by a purely impulsive model and a change in geometry of the dissociating molecule is implied. This observation is substantiated by the variation of the translational anisotropy with photolysis wavelength. We also observe that the bipolar moments describing the angular momentum polarization of the odd J states probed are consistently lower in magnitude than those of the even J states and that this variation is observed for all photolysis wavelengths.  相似文献   

16.
The authors present quantum scattering calculations of rate coefficients for the spin-orbit relaxation of F(2P1/2) atoms in a gas of H2 molecules and Cl(2P1/2) atoms in a gas of H2 and D2 molecules. Their calculation of the thermally averaged rate coefficient for the electronic relaxation of chlorine in H2 agrees very well with an experimental measurement at room temperature. It is found that the spin-orbit relaxation of chlorine atoms in collisions with hydrogen molecules in the rotationally excited state j=2 is dominated by the near-resonant electronic-to-rotational energy transfer accompanied by rotational excitation of the molecules. The rate of the spin-orbit relaxation in collisions with D2 molecules increases to a great extent with the rotational excitation of the molecules. They have found that the H2/D2 isotope effect in the relaxation of Cl(2P1/2) is very sensitive to temperature due to the significant role of molecular rotations in the nonadiabatic transitions. Their calculation yields a rate ratio of 10 for the electronic relaxation in H2 and D2 at room temperature, in qualitative agreement with the experimental measurement of the isotope ratio of about 5. The isotope effect becomes less significant at higher temperatures.  相似文献   

17.
The crystal structures of two new diphosphates, sodium hexamanganese bis­(diphosphate) triphosphate, NaMn6(P2O7)2(P3O10), and potassium hexacadmium bis­(diphosphate) triphosphate, KCd6(P2O7)2(P3O10), confirm the rigidity of the M6(P2O7)2(P3O10) matrix (M is Mn or Cd) and the relatively fixed dimensions of the tunnels extending in the a direction of the unit cell. The compounds are isomorphous; the P2O74? anion and the alkali metal cations lie on mirror planes. Bond‐valence analysis of the bonding details of the atoms found within the tunnels permits a prediction of the conductivity.  相似文献   

18.
O(1D), produced from the photolysis of N2O at 2139 Å, reacts with N2O in accord with: We have used the method of chemical difference to obtain an accurate measure of k2/k3 = 0.59 ± 0.01. Furthermore, the quantum yield of production of O(3P), either on direct photolysis or on deactivation of O(1D) by N2O, is less than 0.02 and probably zero.  相似文献   

19.
A simple method is proposed to estimate nitrogen oxide yield after quenching of the equilibrium mixture, the cooling rate being hyperbolical or exponential.  相似文献   

20.
The importance of vibrational-to-electronic (V-E) energy transfer mediated by spin-orbit coupling in the collisional removal of O2(X 3Sigmag-,upsilon>or=26) by O2 has been reported in a recent communication [F. Dayou, J. Campos-Martinez, M. I. Hernandez, and R. Hernandez-Lamoneda, J. Chem. Phys. 120, 10355 (2004)]. The present work provides details on the electronic properties of the dimer (O2)2 relevant to the self-relaxation of O2(X 3Sigmag-,upsilon>0) where V-E energy transfer involving the O2(a 1Deltag) and O2(b 1Sigmag+) states is incorporated. Two-dimensional electronic structure calculations based on highly correlated ab initio methods have been carried out for the potential-energy and spin-orbit coupling surfaces associated with the ground singlet and two low-lying excited triplet states of the dimer dissociating into O2(X 3Sigmag-)+O2(X 3Sigmag-), O2(a 1Deltag)+O2(X 3Sigmag-), and O2(b 1Sigmag+)+O2(X 3Sigmag-). The resulting interaction potentials for the two excited triplet states display very similar features along the intermolecular separation, whereas differences arise with the ground singlet state for which the spin-exchange interaction produces a shorter equilibrium distance and higher binding energy. The vibrational dependence is qualitatively similar for the three studied interaction potentials. The spin-orbit coupling between the ground and second excited states is already nonzero in the O2+O2 dissociation limit and keeps its asymptotic value up to relatively short intermolecular separations, where the coupling increases for intramolecular distances close to the equilibrium of the isolated diatom. On the other hand, state mixing between the two excited triplet states leads to a noticeable collision-induced spin-orbit coupling between the ground and first excited states. The results are discussed in terms of specific features of the dimer electronic structure (including a simple four-electron model) and compared with existing theoretical and experimental data. This work gives theoretical insight into the origin of electronic energy-transfer mechanisms in O2+O2 collisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号