首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical oxidation of thermally denatured single-stranded DNA (ssDNA) was studied on a room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (IL-CPE). A distinct oxidation peak appeared at +0.772 V (vs. SCE) on the IL-CPE after preconcentration of ssDNA at +0.35 V for 160 s in pH 7.0 phosphate buffer solution (PBS), which was attributed to the oxidation of guanine residue on the ssDNA molecular structure. The results showed an apparent negative shift of the oxidation peak potential and a great enhancement of the oxidation peak current on the IL-CPE compared with that of CPE. The electrochemical parameters of ssDNA on the IL-CPE were further calculated. Under the selected conditions, a linear calibration curve for ssDNA detection was obtained in the concentration range from 10.0 to 110.0 μg mL−1 with the detection limit of 1.5 μg mL−1(3σ).  相似文献   

2.
Gold nanoparticles have been electrodeposited on an electrode through electrogeneration at an ITO|AuCl4? solution in an ionic liquid|aqueous electrolyte three-phase junction. The electrodeposition was carried out by inverted double-pulse potential chronoamperometry. The direct reduction of AuCl4? ions at the electrode is followed by a counterion transfer through the liquid|liquid interface. Contrary to the electrodeposition from a single ionic liquid phase, scanning electron microscopy reveals that the shape of the resulting nanoparticles is highly angular and well-developed with a diameter of 110 ± 30 nm. Catalytic oxidation of glucose on the modified electrode is demonstrated.  相似文献   

3.
Fluctuation analysis was utilized to determine the TEA ion transfer kinetics across the water/1,2-dichloroethane interface. The obtained data were compared with those derived from electrochemical impedance spectroscopy experiments using the same electrolytic cell. The apparent standard rate constants ks determined by these two techniques have a similar value. The average value ks = 0.37 cm s 1 is comparable with the previously reported value ks = 0.2 cm s 1. The experimental approach utilizing a thick wall glass micro-capillary to fix the interface exhibits a very small stray capacitance value, proving this system to be suitable for determining the kinetics of the fast ion transfer across a liquid/liquid interface. Application of a method employing a small perturbation signal prevents polarization of the inner capillary surface by current flowing through the cell. The induced polarization of the capillary can affect ion concentration at the interface due to electroosmosis and thus make the kinetic data evaluation difficult or erroneous.  相似文献   

4.
Electrochemical reduction of the 4-nitrophenyl diazonium salt in ionic liquid media has been investigated at carbon electrode. The ionic liquid chosen for this study was 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI]. The cyclic voltammetry study demonstrated the possibility of the electrochemical grafting of the nitrophenyl groups onto carbon electrode after the reduction of its corresponding diazonium in ionic liquid. The electrochemical characterization of the modified electrode achieved on ionic liquid displays the presence of the nitrophenyl group at the carbon surface. Moreover, the surface concentration of the attached group obtained in this media was found to be around 1.7 × 10−10 mol cm−2, this value may suggest the possibility of the formation of monolayer. Furthermore, the characterization of the modified electrode in [EMIM][TFSI] showed the conversion of some NO2-phenyl groups to NHOH-phenyl. This observation could indicate the presence of surface interaction between the reduced NO2-phenyl and the ionic liquid cation, thanks to the presence of acidic proton in the ionic liquid cation.  相似文献   

5.
This paper shows for the first time that nanocrystalline aluminium can be electrodeposited without any additives in the ionic liquid 1-butyl-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide saturated with AlCl3. The advantages of this ionic liquid compared to chloroaluminate ionic liquids, which were intensively investigated in the past, are that it is water and air stable, easy to purify as well as it is easy to dry to water contents below 1 ppm. Interestingly, this ionic liquid shows biphasic behaviour above a concentration of AlCl3 of 1.6 mol/L. A significant current loop attributed to nucleation was found for bulk deposition of aluminium at room temperature on gold, whereas at 100 °C there is no nucleation loop. The deposits obtained are generally uniform, dense, shining and adherent to the substrate with crystallites in the nanosize regime. At 100 °C, the quality of the deposit is even better with an average size of the crystallites of 34 nm.  相似文献   

6.
The oscillatory behaviour of CO oxidation was studied at 250 °C and atmospheric pressure using an electrochemical catalyst composed of a thin (60 nm) sputtered-Pt film interfaced with an yttria-stabilized zirconia membrane. Oscillations of CO oxidation rate showed a perfect correlation with those of the electrochemical potential values. Electrochemical promotion of catalysis was used to initiate and stop the oscillatory behaviour. Small current application induced a permanent effect on the oscillatory behaviours. An extremely small negative current (? 17 μA) led to a 4-fold increase of the catalytic activity and created oscillations that were stable even after current interruption. This permanent effect in the oscillatory behaviour of CO oxidation rate is observed for the first time using EPOC. This has been interpreted by the higher tendency of the nanometric-Pt particles to form PtOx in thin sputtered films.  相似文献   

7.
Room temperature ionic liquid (RTIL) was prepared on basis of N-methyl-N-butylpiperidinium bis(trifluoromethanesulfonyl)imide (PP14TFSI), which showed a wide electrochemical window (?0.1–5.2 V vs. Li+/Li) and is theoretically feasible as an electrolyte for batteries with metallic Li as anodes. The addition of vinylene carbonate (VC) improved the compatibility of PP14TFSI-based electrolyte towards lithium anodes and enhanced the formation of solid electrolyte interphase film to protect lithium anodes from corrosion. Accordingly, Li/LiFePO4 cells initially delivered a discharge capacity of about 127 mAh g?1 at a current density of 17 mA g?1 in the ionic liquid with the addition of VC and showed better cyclability than in the neat ionic liquid. Electrochemical impedance spectroscopy disclosed that the addition of VC enhanced Li-ion diffusion and depressed interfacial resistance significantly.  相似文献   

8.
We prepared Pt nanocube catalyst with about 3.6 nm in size by a polyol process in the presence of PVP as a stabilizer and Fe ion as a kinetic controller. The crystal structure of Pt nanocube with {1 0 0} faces was confirmed by field-emission transmission electron microscopy. In a cyclic voltammogram, we found that the Pt nanocube catalyst showed relatively high ratio of the forward anodic peak current to the reverse anodic peak current resulting in less accumulation of residues on the catalyst. The Pt nanocube catalyst with the edge of stepped {1 0 0} faces was preferable to breakage of CH3OH and CH3CH2OH compared to polycrystalline Pt nanocatalyst. In an electrochemical measurement for methanol and ethanol electrooxidation, the Pt nanocube catalyst showed an excellent catalytic activity, i.e., lower onset potential and higher current density, compared to the polycrystalline Pt nanocatalyst.  相似文献   

9.
In this letter, we report for the first time lanthanum electrodeposition in ambient atmosphere using 1-octyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid. This electrolyte exhibits an electrochemical window of 4.8 V with a strong cathodic stability and a low hygroscopic character that allows electrodeposition without the need of an inert atmosphere. A 350 nm thick lanthanum film was obtained after 2 h potentiostatic deposition.  相似文献   

10.
Direct electrochemical response of Myoglobin (Myb) at the basal plane graphite (BPG) electrode was observed when a room temperature ionic liquid (RTIL), 1-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate ([HEMIm][BF4]), was used as the supporting electrolyte. In a 0.17 M [HEMIm]BF4 aqueous solution, a couple of well-defined redox peaks of Myb could be obtained, whose anodic and cathodic peak potentials were at −0.158 and −0.224 V (vs. Ag/AgCl), respectively. Both anodic and cathodic peak currents increased linearly with the potential scan rate. Compared with the supporting electrolyte of phosphate buffer, [HEMIm][BF4] played an obvious promotion for the direct electron transfer between Myb and the BPG electrode. Further investigation suggested that Myb was adsorbed tightly on the surface of the BPG electrode in the presence of [HEMIm][BF4] to form a stable, approximate monolayer Myb film. Myb adsorbed on the BPG electrode surface showed a remarkable electrocatalytic activity for the reduction of oxygen in a [HEMIm][BF4] aqueous solution. Based on these, a third-generation biosensor could be constructed to directly detect the concentration of oxygen in aqueous solution with a limit of detection of 2.3 × 10−8 M.  相似文献   

11.
In this study a process has been introduced to replace traditional liquid or solid electrolyte coatings on dye-sensitized photoelectrode in solar cells. This process has more efficient diffusion of electrolyte, hence higher sensitivity. Better interfacial contact between polymer electrolyte and TiO2 photoelectrode had improved electrochemical response and ionic conductivity of cell. Conductivity of this electrode was 9.33 × 10−3 S cm−1 (at room temperature), which is much higher than the using traditional process for addition of electrolytes. It has 0.68 V open-circuit voltage and 3.19 mA cm−2 short-circuit current density. Energy conversion efficiency of this cell was about 37% higher than the cell developed with traditional processes under constant light intensity (45 mW cm−2).  相似文献   

12.
The electrochemical behaviour of nickel hydroxide layer obtained in situ on nickel substrate was studied in frozen electrolyte, solid tetrabutylammonium hydroxide hydrate at temperatures down to 170 K by cyclic voltammetry and chronoamperometry. The decrease of temperature causes substantial decrease of the current and the increase of the difference between peak potentials. The temperature dependence of proton diffusion through nickel hydroxide film was also estimated from chronoamperometric experiments. The activation energy of this process in 170–298 K is equal to 0.25 ± 0.03 eV.  相似文献   

13.
《Fluid Phase Equilibria》2005,231(1):20-26
Liquid–liquid equilibrium (LLE) data for non-aqueous liquid (neohexane [NH], tert-butyl methyl ether [TBME], methylcyclohexane [MCH], or n-heptane [nC7]) and water have been measured under atmospheric pressure at 275.5, 283.15, and 298.15 K. It was found that TBME is the most water soluble followed by NH, MCH, and nC7. As the temperature increased, the solubility of the non-aqueous liquids (NALs) in water decreased. The solubility of water in the non-aqueous liquid was found to increase in the following order: MCH < nC7 < NH < TBME. It was found to increase with increasing temperature. In addition, vapour–liquid–liquid equilibrium (VLLE) data for the above binary systems with methane were measured at 275.5 K and at 120, 1000, and 2000 kPa. It was found that the vapour composition of water and NALs decreased as the pressure increased. The water content in the non-aqueous phase was not a strong function of pressure. The concentration of methane in the non-aqueous phase increased as the pressure increased. Furthermore, the concentration of the methane and NALs in the water phase increased proportionally with pressure. The solubility of methane in water followed Henry's law. It is noted that the measurements were completed prior to the onset of hydrate nucleation.  相似文献   

14.
《Comptes Rendus Chimie》2008,11(9):1037-1042
Results about electrochemical anodic passivation of indium phosphide formed sequentially in two electrolytes with contrasted properties are reported for the first time. Using a galvanostatic method, oxidation of the InP surface has been formed initially at pH 9 with a current density of 0.2 mA cm−2, while the anodization was achieved under illumination in liquid ammonia by cyclic voltammetry. Capacitance–voltage measurements in aqueous media coupled with cyclic voltammetry in liquid ammonia indicate the covering level of the two kinds of anodic layers, whereas XPS analysis gives access to chemical composition of hybrid structures. As a first result, the different measurements reveal the great stability of anodic oxide in liquid ammonia, at each step of oxide coverage. As a second result, the formation of a mixed layer with both oxide and “P–N” terminations has been evidenced by XPS. A new route of InP passivation was clearly established by this alternated anodization process.  相似文献   

15.
A new method to determine the concentration of amikacin(AMK)using methyl blue(MB)as electrochemical probe was developed in this paper.In pH 4.5 Britton-Robinson(B-R)buffer solution,the MB reacted with AMK to form ion association complexes,which led to the reductive peak current of MB at-0.275 V(versus SCE)to decrease,and the decreases were linear with the concentration of AMK in the range of 1.0-60.0 mg/L,the regression of equation isΔIp(nA)=-8.48 102.36c(mg/L), correlation coefficientγis 0.997.The conditions for determining the concentration of AMK using linear sweep voltammetry(SLV) were optimized.The method was used to determine the content of amikacin commercially available with satisfactory results.  相似文献   

16.
A novel screen-printing ink consisted of graphite, cellulose acetate and ionic liquid n-octylpyridinum hexafluorophosphate (OPPF) was developed and investigated. The graphite–cellulose acetate system was employed as the basic ink system, which could be easily printed onto the ploy(vinyl chloride) (PVC) substrate. With the natural viscosity and high conductivity of OPPF, the screen-printed electrode (SPE) from the OPPF modified ink exhibited very attractive properties, such as high stability and electrochemical reactivity, low background current and wide electrochemical window. Furthermore, the electrode possessed excellent electrocatalytic activity for the oxidation of dopamine. The linear range for the determination of dopamine was from 1.0 μM to 2.5 mM and the detection limit was 0.5 μM.  相似文献   

17.
In this article, a new kind of hairpin DNA Electrochemical biosensor using nitroacridone as electrochemical indicator was first designed, and used to detect BCR/ABL fusion gene in Chronic Myelogenous Leukemia (CML). The results indicated that in pH 7.0 Tris–HCl buffer solution, the oxidation peak current was linear with the concentration of complementary strand in the range of 6.2 × 10−8–3.1 × 10−7 mol/l with a detection limit of 5.3 × 10−9 mol/l. This new hairpin DNA electrochemical biosensor demonstrates its excellent specificity for single-base mismatch and complementary (dsDNA) after hybridization, and this probe has been used for assay of PCR product of a real sample with satisfactory result.  相似文献   

18.
Isobaric vapor–liquid (VLE) and vapor–liquid–liquid equilibria (VLLE) were measured for the ternary system water + ethanol + cyclohexane at 101.3 kPa. The experimental determination was carried out in a dynamic equilibrium still with circulation of both the vapor and liquid phases, equipped with an ultrasonic homogenizer. The experimental data demonstrated the existence of a ternary heterogeneous azeotrope at 335.6 K with a composition of 0.188, 0.292, 0.520 mole fraction of water, ethanol and cyclohexane, respectively. The experimental data were compared with those obtained using UNIFAC and NRTL models with parameters taken from literature.  相似文献   

19.
A new chiral separation system effective for the enantioselective extraction of racemic trans-cyclohexane-1,2-diamine is presented. Enantioselective dispersive liquid–liquid microextraction has been used for the chiral microseparation of trans-cyclohexane-1,2-diamine, with a chiral azophenolic crown ether being identified as a versatile chiral selector. The influence of various process conditions on the extraction performance was studied experimentally. It was found that the operational selectivity in one extraction step is mainly related to the type and volume of the solvents, chiral selector concentration, extraction time, temperature of sample solution, and pH. At optimum conditions (300 μL of diethyl ether as the extraction solvent 1 mL of methanol as the disperser solvent, with 5 mmol L?1 chiral selector concentration, pH of the sample equal to 4.5, 30 min extraction time and a temperature of 10 °C), the distribution ratio of (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine was 18.3 and 1.8, respectively, while the enantioselectivity value of 10.2 was found at the optimum condition.  相似文献   

20.
This paper reports an electroanalytical method developed for determining the antioxidant tert-butylhydroquinone (TBHQ) in biodiesel, based on the enhancement effect of cetyltrimethylammonium bromide (CTAB). In pH 6.5 Britton–Robinson buffer, a poorly defined oxidation peak was observed for TBHQ at a carbon paste electrode (CPE). In the presence of low concentrations of CTAB, however, the oxidation peak current was markedly increased. Several parameters were studied and optimized for the development of this methodology, and under optimal conditions the oxidation peak current was proportional to TBHQ concentration in the range of (1.05–10.15) × 10−6 mol L−1, with limits of detection and quantification of 7.11 × 10−8 mol L−1 and 2.37 × 10−7 mol L−1, respectively, by linear sweep voltammetry (LSV). The method was applied to TBHQ determination in soybean biodiesel samples. The results were satisfactory in comparison with those obtained using high-performance liquid chromatography (HPLC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号