首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In this paper, a predator–prey model with disease in the prey is constructed and investigated for the purpose of integrated pest management. In the first part of the main results, the sufficient condition for the global stability of the susceptible pest-eradication periodic solution is obtained, which means if the release amount of infective prey and predator satisfy the condition, then the pest will be controlled. The sufficient condition for the permanence of the system is also obtained subsequently, which means if the release amount of infective prey and predator satisfy the condition, then the prey and the predator will coexist. At last, we interpret our mathematical results.  相似文献   

4.
Let \(\mathbb F_{q}\) be a finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{n})\in \mathbb F_{q}^{n}\backslash \{(0,0,\ldots )\}: Tr(x_{1}^{p^{k_{1}}+1}+x_{2}^{p^{k_{2}}+1}+\cdots +x_{n}^{p^{k_{n}}+1})=c\}\), where \(c\in \mathbb F_p\), Tr is the trace function from \(\mathbb F_{q}\) to \(\mathbb F_{p}\) and each \(m/(m,k_{i})\) ( \(1\le i\le n\) ) is odd. we define a p-ary linear code \(C_{D}=\{c(a_{1},a_{2},\ldots ,a_{n}):(a_{1},a_{2},\ldots ,a_{n})\in \mathbb F_{q}^{n}\}\), where \(c(a_{1},a_{2},\ldots ,a_{n})=(Tr(a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}))_{(x_{1},x_{2},\ldots ,x_{n})\in D}\). We present the weight distributions of the classes of linear codes which have at most three weights.  相似文献   

5.
In this paper, a predator–prey–disease model with immune response in the infected prey is formulated. The basic reproduction number of the within-host model is defined and it is found that there are three equilibria: extinction equilibrium, infection-free equilibrium and infection-persistent equilibrium. The stabilities of these equilibria are completely determined by the reproduction number of the within-host model. Furthermore, we define a basic reproduction number of the between-host model and two predator invasion numbers: predator invasion number in the absence of disease and predator invasion number in the presence of disease. We have predator and infection-free equilibrium, infection-free equilibrium, predator-free equilibrium and a co-existence equilibrium. We determine the local stabilities of these equilibria with conditions on the reproduction and invasion reproduction numbers. Finally, we show that the predator-free equilibrium is globally stable.  相似文献   

6.
In this paper, we study a periodic predator–prey system with prey impulsively unilateral diffusion in two patches. Firstly, based on the results in [41], sufficient conditions on the existence, uniqueness and globally attractiveness of periodic solution for predator-free and prey-free systems are presented. Secondly, by using comparison theorem of impulsive differential equation and other analysis methods, sufficient and necessary conditions on the permanence and extinction of prey species x with predator have other food source are established. Finally, the theoretical results both for non-autonomous system and corresponding autonomous system are confirmed by numerical simulations, from which we can see some interesting phenomena happen.  相似文献   

7.
We study a predator–prey system with a Michaelis–Menten functional response and impulsive perturbations which contain chemical and biological control terms. By applying the Floquet theory, we establish conditions for the existence and stability of prey-free solutions of the system. We also show the existence of a positive periodic solution of the system by using the bifurcation theorem and find a sufficient condition that makes the system permanent. Moreover, numerical results on impulsive perturbations show that the system we consider can give birth to various kinds of dynamical behaviors.  相似文献   

8.
This paper is concerned with a mathematical model dealing with a predator–prey system with disease in the prey. Mathematical analysis of the model regarding stability has been performed. The effect of delay on the above system is studied. By regarding the time delay as the bifurcation parameter, the stability of the positive equilibrium and Hopf bifurcations are investigated. Furthermore, the direction of Hopf bifurcations and the stability of bifurcated periodic solutions are determined by applying the normal form theory and the center manifold reduction for functional differential equations. Finally, to verify our theoretical predictions, some numerical simulations are also included.  相似文献   

9.
In this work, we propose a stage-structured predator–prey model, with prey impulsively diffusing between two patches. Using the discrete dynamical system determined by the stroboscopic map, we obtain a predator-extinction periodic solution. Further, the predator-extinction periodic solution is globally attractive. By the theory on the delay and impulsive differential equation, we prove that the investigated system is permanent. Our results indicate that the discrete time delay has influence to the dynamical behaviors of the investigated system.  相似文献   

10.
In this paper, a predator–prey Leslie–Gower model with disease in prey has been developed. The total population has been divided into three classes, namely susceptible prey, infected prey and predator population. We have also incorporated an infected prey refuge in the model. We have studied the positivity and boundedness of the solutions of the system and analyzed the existence of various equilibrium points and stability of the system at those equilibrium points. We have also discussed the influence of the infected prey refuge on each population density. It is observed that a Hopf bifurcation may occur about the interior equilibrium taking refuge parameter as bifurcation parameter. Our analytical findings are illustrated through computer simulation using MATLAB, which show the reliability of our model from the eco-epidemiological point of view.  相似文献   

11.
12.
In this paper we formulate a predator–prey system in two patches in which the per capita migration rate of each species is influenced only by its own density, i.e. there is no response to the density of the other one. Numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation, i.e. the stable constant steady state loses its stability and spatially non-constant stationary solutions, a pattern emerge.  相似文献   

13.
14.
The purpose of this paper is to study the existence of steady state in a linear cross-diffusion predator–prey model with Beddington–DeAngelis functional response. The proofs mainly rely on Fixed point index theory and analytical techniques.  相似文献   

15.
A three dimensional ecoepidemiological model consisting of susceptible prey, infected prey and predator is proposed and analysed in the present work. The parameter delay is introduced in the model system for considering the time taken by a susceptible prey to become infected. Mathematically we analyze the dynamics of the system such as, boundedness of the solutions, existence of non-negative equilibria, local and global stability of interior equilibrium point. Next we choose delay as a bifurcation parameter to examine the existence of the Hopf bifurcation of the system around its interior equilibrium. Moreover we use the normal form method and center manifold theorem to investigate the direction of the Hopf bifurcation and stability of the bifurcating limit cycle. Some numerical simulations are carried out to support the analytical results.  相似文献   

16.
This paper deals with the existence and nonexistence of nonconstant positive steady-state solutions to a ratio-dependent predator–prey model with diffusion and with the homogeneous Neumann boundary condition. We demonstrate that there exists a0(b) satisfying 0<a0(b)<m1 for 0<b<m1, such that if 0<b<m1 and a0(b)<a<m1, then the diffusion can create nonconstant positive steady-state solutions; whereas the diffusion cannot do provided a>m1.  相似文献   

17.
Based on the availability of prey and a simple predator–prey model, we propose a delayed predator–prey model with predator migration to describe biological control. We first study the existence and stability of equilibria. It turns out that backward bifurcation occurs with the migration rate as bifurcation parameter. The stability of the trivial equilibrium and the boundary equilibrium is delay-independent. However, the stability of the positive equilibrium may be delay-dependent. Moreover, delay can switch the stability of the positive equilibrium. When the positive equilibrium loses stability, Hopf bifurcation can occur. The direction and stability of Hopf bifurcation is derived by applying the center manifold method and the normal form theory. The main theoretical results are illustrated with numerical simulations.  相似文献   

18.
We consider a predator–prey model with prey-taxis and Holling-type II functional responses in a spatially heterogeneous environment to analyze the effects of prey-taxis and the heterogeneity of an environment on predator invasion. To achieve our goal, we investigate the stability of semi-trivial solution in which the predator is absent. It is known that both the predator diffusion and the death rate contribute to the predator invasion in a heterogeneous habitat when there is no prey-taxis. In this paper, we show that predator invasion is affected by the prey-taxis and diffusions of the prey-taxis model for a certain range of predator death rates in a heterogeneous environment. Furthermore, in cases where predator invasion by predator diffusion does not occur in a particular death rate range of the predator, predator invasion can occur by prey-taxis in a spatially heterogeneous habitat. In addition, we compare this phenomenon to the corresponding predator–prey model with ratio-dependent functional responses. It is observed that none of the predator’s diffusion and prey-taxis affect the predator’s invasion, and that only the predator’s death rate contributes to predator invasion for the model with ratio-dependent functional responses.  相似文献   

19.
In this paper, we present a theoretical analysis of processes of pattern formation that involves organisms distribution and their interaction of spatially distributed population with self as well as cross-diffusion in a Beddington–DeAngelis-type predator–prey model. The instability of the uniform equilibrium of the model is discussed, and the sufficient conditions for the instability with zero-flux boundary conditions are obtained. Furthermore, we present novel numerical evidence of time evolution of patterns controlled by self as well as cross-diffusion in the model, and find that the model dynamics exhibits a cross-diffusion controlled formation growth not only to stripes-spots, but also to hot/cold spots, stripes and wave pattern replication. This may enrich the pattern formation in cross-diffusive predator–prey model.  相似文献   

20.
《Applied Mathematical Modelling》2014,38(9-10):2533-2542
In this paper, a predator–prey model consisting of active and dormant states of predators with impulsive control strategy is established. Using Floquet theories, the small amplitude perturbation technique and the piecewise Lyapunov function method, the conditions of local and global asymptotical orbital stability of the prey-eradication periodic solution are obtained. The boundness and permanence of the impulsive system are proved by the comparison principle. Through numerical simulations, the effects of the impulsive perturbation on the inherent oscillation are investigated, which implies that the impulsive perturbation can lead to period-doubling bifurcation, chaos, and period-halving bifurcation. Moreover, the effects of the impulsive perturbation and hatching rate on the chaos of the system are comparatively studied by numerical simulation. These obtained results can be useful for ecosystem management and for explaining complex phenomena of ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号