首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiO2 nanotubes (TNTs) with large aspect ratio and large specific surface area were prepared from P25 (Nippon Aerosil) and applied to dye-sensitized titanium dioxide solar cells (DSSCs). Optimization of fabrication conditions, i.e., pH of the starting paste, sintering temperature for the TiO2 electrodes, electrolyte compositions of DSSCs gave the high conversion efficiency with improved open circuit voltage (V(oc)) and fill factor (FF) when compared to DSSCs made of P25. The evaluation of dye adsorption and the photo-injected electron transport such as electron diffusion coefficient (D) and electron lifetime (tau) in TNTs electrodes revealed that the higher efficiency resulted from increase of electron density with keeping much longer tau in TNTs electrodes than in P25 electrodes.  相似文献   

2.
In the present work we investigate the effect of TiCl4 treatments on the photoconversion efficiency of TiO2 arrays used in dye sensitized solar cell. The results clearly show that by an appropriate treatment the decoration of the TiO2 nanotube arrays with TiO2 nanocrystallites of a typical size of 3 nm can be achieved. These particles can be converted to mixture of anatase and rutile phase by annealing in air. This decoration of the TiO2 nanotubes leads to a significantly higher specific dye loading and, for certain annealing treatments, to a doubling of the solar cell efficiency (in our case from 1.9% to 3.8% of AM 1.5 conditions) can be achieved.  相似文献   

3.
A novel ionic liquid crystal (ILC) system (C(12)MImI/I(2)) with a smectic A phase used as an electrolyte for a dye-sensitized solar cell (DSSC) showed the higher short-circuit current density (J(SC)) and the higher light-to-electricity conversion efficiency than the system using the non-liquid crystalline ionic liquid (C(11)MImI/I(2)), due to the higher conductivity of ILC. To investigate charge transport properties of the electrolytes in detail, the exchange reaction-based diffusion coefficients (D(ex)) were evaluated. The larger D(ex) value of ILC supported that the higher conductivity of ILC is attributed to the enhancement of the exchange reaction between iodide species. As a result of formation of the two-dimensional electron conductive pathways organized by the localized I(3)- and I- at S(A) layers, the concentration of polyiodide species exemplified by I(m)- (m = 5, 7, ...) was higher in C(12)MImI/I(2). However, as the increment of the concentration of polyiodide species is less than that of D(ex), the contribution of a two-dimensional structure of the conductive pathway through the increase of collision frequency between iodide species was proposed. Furthermore, a quasi-solid-state ionic liquid crystal DSSC was successfully fabricated by employing a low molecular gelator. Addition of the 5.0 g/L gelator to ILC improved light-to-electricity conversion efficiency through the increase of J(SC) due to the enhancement of the conductivity in C(12)MImI/I(2)-gel.  相似文献   

4.
Highly crystalline TiO2 nanorods with lengths of 100-300 nm and diameters of 20-30 nm have been synthesized by a hydrothermal process in a cetyltrimethylammonium bromide surfactant solution. The microstructure measured by X-ray diffraction and high-resolution transmission electron microscopy was a pure highly crystalline anatase phase with a long nanorod shape. The addition of a triblock copolymer poly(ethylene oxide)100-poly(propylene oxide) 65-poly(ethylene oxide)100 (F127) decreased the length of the nanorods and kept the rod shape of the particles even after sintering at high temperatures. The rod shape kept under high calcination temperatures contributed to the achievement of the high conversion efficiency of light-to-electricity as discussed in the paper. A high conversion efficiency of light-to-electricity of 7.29% was obtained with the TiO2 single-crystalline anatase nanorod cell.  相似文献   

5.
In this study, the influence of the TiCl(4) post-treatment on nanocrystalline TiO(2) films as electrodes in dye-sensitized solar cells is investigated and compared to nontreated films. As a result of this post-treatment cell efficiencies are improved, due to higher photocurrents. On a microscopic scale TiO(2) particle growth on the order of 1 nm is observed. Despite a corresponding decrease of BET surface area, more dye is adsorbed onto the oxide surface. Although it seems trivial to match this finding with the improved photocurrent, this performance improvement cannot be attributed to higher dye adsorption only. This follows from comparison between incident photon to current conversion efficiency (IPCE) and light absorption characteristics. Since the charge transport properties of the TiO(2) films are already more than sufficient without treatment, the increase in short circuit current density J(SC) cannot be related to improvements in charge transport either. Transient photocurrent measurements indicate a shift in the conduction band edge of the TiO(2) upon TiCl(4) treatment. It is concluded that the main contribution to enhanced current originates from this shift in conduction band edge, resulting in improved charge injection into the TiO(2).  相似文献   

6.
Dye-sensitized solar cells were fabricated based on the composites of anatase TiO2 nanoparticles and single crystalline anatase TiO2 nanowires. Nanoparticle/nanowire composites can possess the advantages of both building blocks, i.e., the high surface area of nanoparticle aggregates and the rapid electron transport rate and the light scattering effect of single-crystalline nanowires. Three different composites were prepared with 5 wt %, 20 wt %, and 77 wt % nanowires, respectively. The performances of composite solar cells were compared with pure nanoparticle cells at a series of film thickness. With low nanowire concentrations (5 wt % and 20 wt %), the composite films maintain similar specific surface area as the pure nanoparticle films, while the composite cells show higher short-circuit current density and open-circuit voltage. An enhancement of power efficiency from 6.7% for pure nanoparticle cells to 8.6% for the composite cell with 20 wt % nanowires has been achieved under 1 Sun AM1.5 illumination (100 mW/cm2). For the composite film with 77 wt % nanowires, the nanowires became the major phase. Their less compact packing resulted in significant decrease of the specific surface area, and thus the current density. However, with the increase of film thickness, the current density showed a continuous increase in the whole thickness range up to 17 microm, indicating the improved electron diffusion length due to the formed nanowire network. The nanowires also helped to preserve crack-free thick films. These results show that employing nanoparticle/nanowire composites represents a promising approach for further improving the efficiencies of sensitized solar cells.  相似文献   

7.
In the construction of high performance planar perovskite solar cells (PSCs),the modification of compact TiO2 layer and engineering of perovskite/TiO2 interface...  相似文献   

8.
Wu  Caiyun  Qi  Lihong  Chen  Yujin  Ouyang  Qiuyun  Li  Chunyan 《Research on Chemical Intermediates》2016,42(6):5653-5664
Research on Chemical Intermediates - Two-dimensional (2D) TiO2 nanosheets with high crystallinity and good light scattering properties were synthesized via a simple solvothermal process using...  相似文献   

9.
The effect of the number and arrangement of TiO2‐based photoanode layers on the efficiency of dye‐sensitized solar cells (DSSCs) was investigated. Compact, mesoporous, and blocking layers of TiO2 were prepared to form monolayer, bilayer, and trilayer photoanodes. Compact and blocking TiO2 layers were prepared using dip‐coating technique, whereas the doctor‐blade method was employed to prepare TiO2 paste layers using nanoparticles prepared by the sol–gel method. The crystalline structure of photoanodes was characterized by X‐ray diffraction (XRD) measurements and their morphology and thickness were characterized by the scanning electron microscopy (SEM) technique. The photovoltaic performance of constructed DSSC devices was investigated and the optimum arrangement was identified and explained in terms of dye loading enhancement and recombination reduction at the fluorine‐doped tin oxide (FTO)/electrolyte interface.  相似文献   

10.
The screen-printed nanoporous TiO2 thin film was employed to fabricate dye-sensitized solid-state solar cells using CuI as hole-transport materials. The solar cell based on nanoporous TiO2 thin film with large pores formed by the addition of polystyrene balls with diameter of 200 nm to the TiO2 paste exhibits photovoltaic performance enhancement, which is attributed to the good contact of CuI with surface of dye-sensitized thin film due to easy penetration of CuI in the film with large pores.  相似文献   

11.
The TiO(2)-B nanobelt (NB)/TiO(2) nanoparticle (NP) sandwich-type structure photoelectrode, with controllable nanobelt length, has been used to fabricate high-efficiency dye-sensitized solar cells (DSSCs), which combine the advantages of the rapid electron transport in TiO(2)-B NBs and the high surface area of TiO(2) NPs. The results indicate that the sandwich-type photoelectrode achieves higher photoelectrical conversion efficiency when compared with the TiO(2) nanoparticulate electrode. Increasing the length of TiO(2)-B NBs has been demonstrated to improve the photoelectric conversion efficiency (η). DSSCs with the longest (10 μm) TiO(2)-B NBs yield the highest η of 7.94%. The interfacial electron transport of DSSCs with different lengths of TiO(2)-B NBs has been quantitatively investigated using the photovoltage transient and the electrochemical impedance spectra, which demonstrates that the DSSCs with longest TiO(2)-B NBs display the highest electron collection efficiency and the fastest interfacial electron transfer.  相似文献   

12.
A new kind of photoactive electrodes with nanocrystalline TiO2(nano-TiO2)secondary structure is successfully prepared via a simple method of adding a small amount of TiCl4 2-propanol solution in conventional nano-TiO2 paste to form micro-sized nano-TiO2 aggregates.The benefits of this special structure include improved optical absorption,increased light scattering ability,and enhanced electron transport and collection efficiency.Dye-sensitized solar cells(DSCs)based on these photoactive electrodes show improved performance.The power conversion efficiency of the cells can be increased from 5.03%to 7.30%by substituting 6μm conventional nano-TiO2 thin film with the same thickness of as-prepared nano-TiO2 aggregates film in the photoactive electrodes.A higher power conversion efficiency of the cells can be obtained by further increasing the thickness of the nano-TiO2 aggregates film.  相似文献   

13.
本文报道了一种新型的二级结构TiO2纳米晶(nano-TiO2)光阳极的简单制备方法及其在高效染料敏化太阳能电池中的应用.通过添加适量TiCl4异丙醇溶液到传统nano-TiO2浆料中,可生成微米级nano-TiO2聚集体.该二级结构能有效提高光阳极光谱吸收和散射性能及电子传输和收集效率.基于这种结构光阳极的染料敏化太阳能电池光电性能有显著提高.在光阳极中将6μm厚传统nano-TiO2膜用相同厚度nano-TiO2聚集体替换,电池光电转换效率由5.03%提高到7.30%.进一步增加nano-TiO2聚集体的厚度能制备出更高光电转换效率的电池.  相似文献   

14.
Zinc oxide (ZnO) nanorods of different structures have been grown on indium-doped tin oxide substrates by using TiO2 as seed layer. The ZnO nanorods have been prepared using TiO2 seed layers annealed at different temperatures via a simple sol–gel method. The X-ray diffraction result indicates that the prepared samples are of wurtzite structure. Dye sensitized solar cells have been fabricated using the prepared ZnO nanorods. The open circuit voltage, short circuit current density, fill factor, and power conversion efficiency of the ZnO nanorod based dye sensitized solar cells prepared using TiO2 seed layers annealed at different temperatures have been determined. The improvement in power conversion efficiency may be due to the flower like structured ZnO nanorods with smaller diameter and large specific surface area which paves way for the efficient electron transfer in hybrid solar cells.  相似文献   

15.
Combined structure of anodic TiO2 nanotubes and TiO2 nanoparticles (TiNTs-TiNPs) has been synthesized by a facile combination of hydrothermal and chemical vapor deposition methods. Ordered TiO2 nanotubes with smooth walls were fabricated by two step anodization method in ethylene glycol containing NH4F at 50 V. This nanotubular array after annealing at 450 °C was subjected to the hydrothermally produced gaseous environment in an autoclave with diluted TiCl4 solution at its bottom. Vapors of TiCl4 were allowed to react chemically with water vapors for predefined time durations at 180 °C that resulted in the deposition of TiO2 nanoparticles on tubes’ surface and side walls. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed that for one hour reaction duration, nanoparticles were evenly coated on the walls of nanotubes, whereas, longer durations tend to deteriorate the tubular structure. Consequently, the ordered TiNTs-TiNPs array produced after one hour coating has shown better performance for dye-sensitized solar cell DSSC) in back illumination mode with 130% increase in efficiency as compared to the device based on bare TiO2 nanotubes. The same photoanode has higher reflective properties with higher scattering ability. The solar cell based on this photoanode exhibits higher external quantum efficiency and effective charge transport properties. This study shows that porous ordered 1D structures based on TiO2 are of crucial importance for the high performance of DSSCs.  相似文献   

16.
TiO2光阳极膜是染料敏化太阳能电池(DSSC)的核心部件之一,它对电池的光电转换效率起决定性作用.TiO2电极一般采用刮涂法和丝网印刷法制备.近3年,通过静电喷雾制备光阳极的方法得到国内外学者的关注.静电喷雾制备光阳极会受到多种因素的影响,如电压、流速、悬浮液浓度、喷雾距离以及喷雾时间等.但这些因素对成膜和DSSC器件性能的影响却没有得到全面的研究或者报道.本文使用静电喷雾法制备了多孔TiO2纳米膜,并研究了以其为电极的电池器件特性.经过超声充分分散的稳定TiO2乙醇悬浮液在高电压下喷雾到导电玻璃上成膜.通过改变电喷雾距离,得到了具有不同形貌的TiO:光阳极膜,并解释了其形成的机理及其对电池性能的影响.研究还表明,光阳极膜的TiC14处理能够很好地改善电池性能.通过优化,基于流速为0.8mL/h、电喷雾距离和时间分别为2.2cm和8min条件下制备的光阳极,结合TiC14处理,组装的电池在模拟太阳光源AM1.5G下光电转化效率达6.24%.  相似文献   

17.
An alloy containing 5 at.% of N was produced by arc melting of Ti and TiN powders. By anodization of the alloy in a 10 wt.% K2HPO4/glycerol electrolyte at 140 °C, oxide mesosponge layers can be formed with thickness as up to several micrometers. X-ray photoelectron spectroscopy confirms nitrogen uptake in the oxide. Photoelectrochemical measurements show successful N-doping of these mesoporous anodic layers with a significant visible light photoresponse.  相似文献   

18.
Dye-sensitized solar cells fabricated using ordered arrays of titania nanotubes (tube lengths 5, 10, and 20 microm) grown on titanium have been characterized by a range of experimental methods. The collection efficiency for photoinjected electrons in the cells is close to 100% under short circuit conditions, even for a 20 microm thick nanotube array. Transport, trapping, and back transfer of electrons in the nanotube cells have been studied in detail by a range of complementary experimental techniques. Analysis of the experimental results has shown that the electron diffusion length (which depends on the diffusion coefficient and lifetime of the photoinjected electrons) is of the order of 100 microm in the titania nanotube cells. This is consistent with the observation that the collection efficiency for electrons is close to 100%, even for the thickest (20 microm) nanotube films used in the study. The study revealed a substantial discrepancy between the shapes of the electron trap distributions measured experimentally using charge extraction techniques and those inferred indirectly from transient current and voltage measurements. The discrepancy is resolved by introduction of a numerical factor to account for non-ideal thermodynamic behavior of free electrons in the nanostructured titania.  相似文献   

19.
后处理对TiO_2纳米晶膜电极光电性能的改善(英文)   总被引:3,自引:0,他引:3  
利用TiCl4 水溶液处理TiO2 纳米晶膜电极 ,可以提高光电流 ,改善电极的光电转换性能 .对未经处理和处理后电极的比表面、孔分布 ,以及瞬态光电流分析表明 ,后处理改善了电荷在电极中的传输 ,从而提高了光电流  相似文献   

20.
Journal of Solid State Electrochemistry - In this work, we have synthesized Mo-doped TiO2 nanoparticles by sol–gel method and used them as photoanode in dye-sensitized solar cells (DSSCs). Mo...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号