首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2 has been widely utilized for various industrial applications such as photochemical cells, photocatalysts, and electrochromic devices. The crystallinity and morphology of TiO2 films play a significant role in determining the overall efficiency of dye-sensitized solar cells (DSSCs). In this study, the preparation of nanostructured TiO2 films by electron beam irradiation and their characterization were investigated for the application of DSSCs. TiO2 films were exposed to 20–100 kGy of electron beam irradiation using 1.14 MeV energy acceleration with a 7.46 mA beam current and 10 kGy/pass dose rates. These samples were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and X-ray photoelectron spectroscopy (XPS) analysis. After irradiation, each TiO2 film was tested as a DSSC. At low doses of electron beam irradiation (20 kGy), the energy conversion efficiency of the film was approximately 4.0% under illumination of simulated sunlight with AM 1.5 G (100 mW/cm2). We found that electron beam irradiation resulted in surface modification of the TiO2 films, which could explain the observed increase in the conversion efficiency in irradiated versus non-irradiated films.  相似文献   

2.
Crack-free thick ordered mesoporous TiO2 films with excellent optical quality have been synthesized by combination of “Doctor Blade” technique and a two-step evaporation induced self-assembly (EISA) method. By employing the as-synthesized mesoporous film with the thickness of 7 μm as the photoanode in dye-sensitized solar cell (DSC), a solar conversion efficiency of 6.53% has been obtained at 30 mW cm−2 light intensity.  相似文献   

3.
Visible light active hydrogen modified n-type titanium oxide (HM-n-TiO2) thin films were synthesized by thermal oxidation of Ti metal sheet (Alfa Co. 0.25 mm thick) in an electric oven followed by incorporation of hydrogen electrochemically under cathodic polarization at ?1.6 V vs Pt. The photoresponse of the HM-n-TiO2 was evaluated by measuring the rate of water splitting reaction to hydrogen and oxygen in terms of photocurrent density, Jp. The optimized electric oven-made n-TiO2 and HM-n-TiO2 photoelectrodes showed photocurrent densities of 0.2 mA cm?2 and 1.60 mA cm?2, respectively, at a measured potential of ?0.4 V vs Pt at illumination intensity of 100 mW cm?2 from a 150 W xenon lamp. This indicated an eightfold increase in photocurrent density for HM-n-TiO2 compared to oven-made n-TiO2 at the same measured electrode potential. The band-gap energy of HM-n-TiO2 was found to be 2.7 eV compared to 2.82 eV for electric oven-made n-TiO2 and a mid-gap band at 1.67 eV above the valence band was also observed. The HM-n-TiO2 thin film photoelectrodes were characterized using photocurrent density under monochromatic light illumination and UV–Vis spectral measurements.  相似文献   

4.
The effects of surface modification and reaction conditions on the photoelectrochemical properties of polycrystalline Cu(In,Ga)Se2 (CIGS) thin films for water splitting were studied. CIGS modified with platinum particles (Pt/CIGS) generated a cathodic photocurrent at potentials up to + 0.4 V vs. RHE at pH = 9.5. The photocurrent was stable for 16 h, which resulted in a turnover number of over 500. A CdS-inserted film (Pt/CdS/CIGS) had significantly improved properties compared to Pt/CIGS: a 0.3 V higher onset potential of cathodic photocurrent and a three-fold increase in the quantum efficiency. Our results suggest the feasibility of CIGS as a photocathode for biphotoelectrochemical water splitting.  相似文献   

5.
Composite films of graphene and polystyreneslufonate doped poly(3,4-ethylenedioxythiophene) (graphene/PEDOT–PSS) were deposited on indium tin oxide (ITO) substrates by spin coating at room temperature and applied as counter electrodes of dye-sensitized solar cells (DSSCs). A 60 nm thick composite film (contained 1 wt% graphene) coated ITO electrode exhibited high transmittance (>80%) at visible wavelengths and high electrocatalytic activity. The energy conversion efficiency of the cell with this film as counter electrode reached 4.5%, which is comparable to 6.3% of the cell with platinum counter electrode under the same experimental condition.  相似文献   

6.
Electrode materials for supercapacitors are at present commonly evaluated and selected by their mass specific capacitance (CM, F g−1). However, using only this parameter may be a misleading practice because the electrode capacitance also depends on kinetics, and may not increase simply by increasing material mass. It is therefore important to complement CM by the practically accessible electrode specific capacitance (CE, F cm−2) in material selection. Poly[3,4-ethylene-dioxythiophene] (PEDOT) has a mass specific capacitance lower than other common conducting polymers, e.g. polyaniline. However, as demonstrated in this communication, this polymer can be potentiostatically grown to very thick films (up to 0.5 mm) that were porous at both micro- and nanometer scales. Measured by both cyclic voltammetry and electrochemical impedance spectrometry, these thick PEDOT films exhibited electrode specific capacitance (CE, F cm−2) increasing linearly with the film deposition charge, approaching 5 F cm−2, which is currently the highest amongst all reported materials.  相似文献   

7.
In this paper, we prepared TiO2@CdS core–shell nanorods films electrodes using a simple and low-cost chemical bath deposition method. The core–shell nanorods films electrodes were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV–vis spectrometry techniques. After applying these TiO2@CdS core–shell nanorods electrodes in photovoltaic cells, we found that the photocurrent was dramatically enhanced, comparing with those of bare TiO2 nanorods and CdS films electrodes. Moreover, TiO2@CdS core–shell nanorods film electrode showed better cell performance than CdS nanoparticles deposited TiO2 nanoparticles (P25) film electrode. A photocurrent of 1.31 mA/cm2, a fill factor of 0.43, an open circuit photovoltage of 0.44 V, and a conversion efficiency of 0.8% were obtained under an illumination of 32 mW/cm2, when the CdS nanoparticles deposited on TiO2 nanorods film for about 20 min. The maximum quantum efficiency of 5.0% was obtained at an incident wavelength of 500 nm. We believe that TiO2@CdS core–shell heterostructured nanorods are excellent candidates for studying some fundamental aspects on charge separation and transfer in the fields of photovoltaic cells and photocatalysis.  相似文献   

8.
Noble metal-modified TiO2 films were prepared by electron beam deposition of Pt, Pd, Au and Ag on the surface of TiO2 films with diameters ranging from <1 nm to 500 nm. The morphology of the films was characterized by X-ray diffractometry (XRD), field emission scanning electron microscope (FMSEM) and transmission electron microscope (TEM). The photocatalytic capability of the films were tested and compared by degradation of methyl orange (MO) in aqueous solutions under both UV and visible light illumination.  相似文献   

9.
In this work, water-based precursor solutions suitable for dip-coating of thick La2Zr2O7 (LZO) buffer layers for coated conductors on Ni-5%W substrates were developed. The solutions were prepared based on chelate chemistry using water as the main solvent. The effect of polymer addition on the maximum crack-free thickness of the deposited films was investigated. This novel solution preparation method revealed the possibility to grow single, crack-free layers with thicknesses ranging 100–280 nm with good crystallinity and an in-plane grain misalignment with average FWHM of 6.55°. TEM studies illustrated the presence of nanovoids, typical for CSD–LZO films annealed under Ar-5%H2 gas flow. The appropriate buffer layer action of the film in preventing the Ni diffusion was studied using XPS. It was found that the Ni diffusion was restricted to the first 30 nm of a 140 nm thick film. The surface texture of the film was improved using a seed layer.  相似文献   

10.
CdS is a very important semiconductor, and various micro-/nano-structured forms of CdS have been fabricated with the aim of improving its photoelectrochemical performance. We report here for the first time the preparation of a CdS film consisting of irregular micro-block arrays of closely packed CdS nanoparticles. It performs outstandingly well as a photoanode because it possesses the advantages of both arrays and nanoparticles. This CdS film is prepared simply by a combination of reaction and assembly at the gas/liquid interface (RAG/L) with successive ionic layer adsorption and reaction (SILAR), requiring no templates or expensive equipment. In this approach, the nanopores in the film of loosely aggregated CdS nanoparticles produced by RAG/L are filled by CdS nanoparticles via SILAR, forming a compact CdS film. Network micro-cracks form in the compact CdS film due to calcination caused by differential thermal expansion compared with the substrate, and these cut the CdS film into irregular micro-block arrays. This micro-/nano-structure in the prepared CdS film improves its capacity for visible light absorption, facilitates the generation/separation of excited charges, and enhances mass transfer. In an alkaline solution of methanol, the prepared CdS film exhibits the highest saturation photocurrent density (6.5 mA cm 2) ever reported on CdS-based photoanodes under visible light illumination.  相似文献   

11.
Spray coated multi-wall carbon nanotube (CNT) film on fluorine-doped tin oxide glass substrate has been investigated as a counter electrode for tri-iodide reduction in dye-sensitized solar cells. The photovoltaic parameters, in particular, the fill factor shows a strong dependency on the spraying time of multi-wall CNTs. Under one sun illumination (100 mW cm−2, AM 1.5 G), the device shows a maximum energy conversion efficiency of 7.59%. Electrochemical impedance spectroscopy analysis reveals a decrease in the charge transfer resistance of multi-wall CNT counter electrode with increase of spraying time; leads to an improvement in the photovoltaic parameters.  相似文献   

12.
In the present work, we produce 15 μm thick titania mesosponge layers (TMSL) by a Ti anodization/etching process and use the layers in dye-sensitized solar cells (DSCs). We show that the solar cell efficiency can considerably be improved by a TiCl4 hydrolysis treatment (increase of approx. 40% to an overall value of 4.9% under AM 1.5 illumination). This beneficial effect is due to the decoration of the ~10 nm wide channels present in TMSL with TiO2 nanoparticles of approx. 3 nm diameter, which allow for a significantly higher specific dye loading of the TMS structure.  相似文献   

13.
Performance of MEMS-based DMFC is low, because graphite-based porous electrodes show poor compatibility with MEMS technology. Nanoimprint technology was adopted in this paper to prepare fine pattern on proton exchange membrane (PEM) in MEMS-based DMFC as a promising alternative to the graphite-based porous electrodes. Micro-convex with the diameter of about 600 nm and the height of 50–70 nm was prepared on Nafion® 117 membrane by the nanoimprint at 130 °C using silicon mold. Thick Pt film (20 nm) was deposited as catalyst directly on the nanoimprinted Nafion® 117 membrane. Then the Pt-coated PEM was sandwiched with micro-channeled silicon plates to form a micro-DMFC. With passively feeding of 1 M methanol solution and air at room temperature, the as-prepared cell had the open circuit voltage (OCV) of 0.74 V and the maximum power density of 0.20 mW/cm2. The measured OCV was higher than those (0.1–0.3 V) of the state-of-the-art MEMS-based DMFC with planar electrode and pure Pt catalyst.  相似文献   

14.
《Solid State Sciences》2007,9(5):429-431
The application of kinetically controlled vapor diffusion catalysis to the synthesis of films of chromium phosphate produces a novel, nanostructured film morphology. The resulting material consists of a thin, flat backplane (3 μm thick) with needles of CrPO4·6H2O projecting from one surface of the film. The reaction process occurs at low temperature (25 °C) and mild pH.  相似文献   

15.
An unmodified Pt microelectrode and a Pt microelectrode coated with polyaniline were used in conjunction with a scanning electrochemical microscope (SECM) to study anodic dissolution in the Fe│H2SO4 system. The concentrations of Fe2 + (cFe2 +) measured with the unmodified microelectrode and the pH values measured with the polyaniline-modified microelectrode were recorded in situ during current oscillations in the Fe│H2SO4 system and were found to change periodically at the Fe│H2SO4 interface. The changes in cFe2 + may be caused by the periodic formation and dissolution of surface film(s), which could be salt films and/or oxide films. If a salt film is formed, it is unlikely to affect the pH. Since the pH changes periodically during the current oscillations, it can be deduced that the surface film is mainly composed of oxide, and that the formation and dissolution of the oxide film play a key role in the current oscillations of the system.  相似文献   

16.
The effect of “permanent electrochemical promotion of catalysis” (P-EPOC) was studied for the first time in the catalytic deep oxidation of C3H8 over a thin (~ 150 nm) sputtered Pt film on YSZ, under excess of oxygen at 350 °C. Short positive potential application (+ 1 V) resulted in a 5.6-fold increase of the catalytic rate, where C3H8 conversion reached 33%, while the apparent Faradaic efficiency was ~ 330. After positive current interruption the catalytic rate remained in a highly active steady-state, determined by the total charge of the anodic polarization step. Restoration of the catalytic activity to the initial value occurred only by a similar negative potential imposition. This new stable steady-state after current interruption can be interpreted by storage of a non-reactive oxygen species upon anodic polarization at the proximity of the Pt/YSZ interface and subsequent enhanced migration of spillover Oδ? species from the electrolyte support to the Pt/gas interface under open-circuit conditions.  相似文献   

17.
Real structure of cubic Pt nanoparticle has been studied at various potentials in 0.1 M NaClO4 with the use of atomic force microscopy (AFM). Cubic Pt nanoparticles in 10 nm height are clearly imaged from 0.10 V to 1.10 V (Ag/AgCl). The height of the nanoparticle increases 1.2 ± 0.7 nm (10.4 ± 6.8%) around the onset potential of oxygen evolution (1.20 V (Ag/AgCl)). The height increase is attributed to the formation of the oxide species at the inner layers of the nanoparticle. Dissolution of the nanoparticle starts from the upper terrace, not from the edge above 1.40 V (Ag/AgCl).  相似文献   

18.
The role of reduced graphene oxide(rGO) in the enhancement of photo-conversion efficiency of ZnO films for photoelectrochemical(PEC) water-splitting applications was analyzed. ZnO and rGO-hybridized ZnO(rGO/ZnO) films were prepared via a two-step electrochemical deposition method followed by annealing at 300 °C under argon gas flow. The physical, optical and electrochemical properties of the films were characterized to identify the effect of rGO-hybridization on the applied bias photon-to-current efficiency(ABPE) of ZnO. Scanning electron microscopy and X-ray diffraction indicated the formation of verticallyaligned, wurtzite-phase ZnO nanorods. Diffuse-reflectance UV–visible spectroscopy indicated that rGO-hybridization was able to increase the light absorption range of the rGO/ZnO film. UPS analysis showed that hybridization with rGO increased the band gap of ZnO(3.56 eV) to 3.63 eV for rGO/ZnO sample,which may be attributed to the Burstein–Moss effect. Photoluminescence(PL) spectra disclosed that rGOhybridization suppressed electron-hole recombination due to crystal defects. Linear sweep voltammetry of the prepared thin films showed photocurrent density of 1.0 and 1.8 m A/cm~2 for ZnO and rGO/ZnO at+0.7 V, which corresponded to an ABPE of 0.55% and 0.95%, respectively. Thus, this report highlighted the multi-faceted role of rGO-hybridization in the enhancement of ZnO photo-conversion efficiency.  相似文献   

19.
Four films (A, B, C and D) of two-dimensional island platinum films (2D-I(Pt)Fs) whose mass thicknesses (dm) are 10, 20, 30 and 40 Å, respectively were deposited onto Corning 7059 glass substrates via the thermal evaporation technique. The increase in the film resistance with time (aging) in air is monitored until stable values are obtained. Each of the prepared films was γ-irradiated by different doses, namely, 100, 200, 300, 500 and 700 Gy; this was done using 137Cs (0.662 MeV) radiation source of dose rate 0.5 Gy/min. For each dose the relative change in the film resistance was found at different values of strain either in the tensional or compressional mode. The gauge factor (v) of the Pt films was deduced and we found that; for particular dm, the gauge factor decreases as the dose increases. Also, for a particular dose, v decreases as dm increases. Qualitative interpretation for the results was offered on the ground that (i) the transfer of electrons between islands takes place by the thermally activated tunneling mechanism, (ii) the process of γ-irradiation makes the islands spread along the substrate and consequently the inter-island spacing will decrease. The micrographs taken by the Atomic Force Microscope (AFM) confirmed such spreading.  相似文献   

20.
Porous ZnO/dye hybrid films have been deposited by cathodic electrodeposition, and their active surface area after dye desorption was evaluated by impedance measurements with the semiconducting electrode polarized in accumulation. Surface area ratios have been deduced for a large number of films from imaginary part Z″ vs. frequency measurements, having a constant rate over the frequency range from 0.5 Hz to > 50 Hz. The active surface increased by a factor of roughly 150 per every micron of film with respect to the area of a flat ZnO electrode: this linear relationship held from less than 1 µm up to 9 µm thick films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号