首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(3,4-ethylenedioxythiophene) nanofibers (PEDOT-NF) with high catalytic activity were synthesized and employed as a counter electrode in dye-sensitized solar cells (DSSCs). A polymeric ionic liquid (PIL) was used as a gelling agent and an iodide source for making a highly conductive gel polymer electrolyte. A quasi-solid-state DSSC assembled with this PIL-based gel polymer electrolyte and PEDOT-NF counter electrode exhibited high conversion efficiency of 8.12% at 100 mW cm 2.  相似文献   

2.
A novel acidic cellulose–chitin hybrid gel electrolyte including binary ionic liquids (ILs) with an aqueous H2SO4 solution was prepared for an electric double layer capacitor (EDLC). Its electrochemical characteristics were investigated by galvanostatic charge–discharge measurements. The test cell with a hybrid gel electrolyte shows a specific capacitance of 162 F g?1 at room temperature, which is higher than that for a cell with an H2SO4 electrolyte, 155 F g?1. This hybrid gel electrolyte exhibits excellent high-rate discharge capability in a wide range of current densities as well as an aqueous H2SO4 solution. The discharge capacitance of the test cell can retain over 80% of its initial value in 100,000 cycles even at a high current density of 5000 mA g?1.  相似文献   

3.
A neutral polymer electrolyte comprised of lithium sulfate (Li2SO4) and polyacrylamide (PAM) was developed. The Li2SO4-PAM electrolyte film shows an ionic conductivity up to 10 mS cm 1 in 45%RH conditions. Solid double layer capacitors were demonstrated using CNT-graphite electrodes and Li2SO4-PAM solid electrolytes. The voltage window of the solid cell was about 2.0 V, identical to that of a Li2SO4 liquid cell used as baseline. The demonstrated voltage window is significantly larger than that reported for proton- or hydroxyl-conducting electrolytes, suggesting that the Li2SO4-PAM electrolyte is a promising system for high energy density supercapacitors. The solid device also demonstrated excellent rate capability (up to 5 V s 1) and good cycle life (beyond 10,000 charge/discharge cycles).  相似文献   

4.
A cobalt-free cubic perovskite oxide, SrFe0.9Nb0.1O3?δ (SFN) was investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results showed that SFN cathode was chemically compatible with the electrolyte Sm0.2Ce0.8O1.9 (SDC) for temperatures up to 1050 °C. The electrical conductivity of SFN sample reached 34–70 S cm?1 in the commonly operated temperatures of IT-SOFCs (600–800 °C). The area specific resistance was 0.138 Ω cm2 for SFN cathode on SDC electrolyte at 750 °C. A maximum power density of 407 mW cm?2 was obtained at 800 °C for single-cell with 300 μm thick SDC electrolyte and SFN cathode.  相似文献   

5.
Transition-metal doped double-perovskite structure oxides GdBaCo2/3Fe2/3Ni2/3O5+δ (FN-GBCO), GdBaCo2/3Fe2/3Cu2/3O5+δ (FC-GBCO), GdBaCoCuO5+δ (C-GBCO) and pristine GdBaCo2O5+δ (GBCO) were synthesized via a citrate combustion method. The thermal-expansion coefficient (TEC) and electrochemical performance of the oxides were investigated as potential cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The TEC exhibited by the FC-GBCO cathode up to 900 °C is 14.6 × 10?6 °C?1, which is lower than the value of GBCO (19.9 × 10?6 °C?1). Area specific resistances (ASR) of 0.165 Ω cm2 at 700 °C and 0.048 Ω cm2 at 750 °C were achieved for the FC-GBCO cathode on a Ce0.9Gd0.1O1.95 (CGO) electrolyte. An electrolyte supported (300 μm thick) single-cell configuration of FC-GBCO/CGO/Ni-CGO attained a maximum power density of 435 mW cm?2 at 700 °C. The unique composition of GBCO co-doped with Fe and Cu ions in the Co sites exhibited reduced TEC and enhancement of electrochemical performance and good chemical compatibility with CGO, and this composition is proving to be a potential cathode for IT-SOFCs.  相似文献   

6.
We have successfully developed a new process to prepare porous poly(methyl methacrylate-co-acrylonitrile) (P(MMA-AN)) copolymer based gel electrolyte. The porous structure in the polymer matrix is achieved by adding SnO2 nanoparticles which are mostly used as gas sensor materials. The quasi-aromatic solvent, NMP, has an electron-repulsion effect with the space charge layer on the surface of SnO2 nanoparticles and forms a special gas–liquid phase interface. Once the cast polymer solution is stored at an elevated temperature to evaporate the solvent, gas–liquid phase separation happens and spherical pores are obtained. The ionic conductivity at room temperature of the prepared gel polymer electrolyte based on the porous membrane is as high as 1.54 × 10−3 S cm−1 with the electrochemical stability up to 5.10 V (vs. Li/Li+). This method presents another promising way to prepare porous polymer electrolyte for practical use.  相似文献   

7.
All-solid-state phosphate symmetric cells using Li3V2(PO4)3 for both the positive and negative electrodes with the phosphate Li1.5Al0.5Ge1.5(PO4)3 as the solid electrolyte were proposed. Amorphous Li1.5Al0.5Ge1.5(PO4)3 was added into the electrode to increase the interface area between the active materials and the electrolyte. Any other phases were not formed at the electrode/electrolyte interface even after hot pressing at 600 °C. The discharge capacity was 92 mAh g? 1 at 22 µA cm? 2 at 80 °C, and 38 mAh g? 1 at 25 °C, respectively. Symmetric cell configuration leads to simplify the fabrication process for all-solid-state batteries and will reduce manufacturing costs.  相似文献   

8.
Room temperature ionic liquid (RTIL) was prepared on basis of N-methyl-N-butylpiperidinium bis(trifluoromethanesulfonyl)imide (PP14TFSI), which showed a wide electrochemical window (?0.1–5.2 V vs. Li+/Li) and is theoretically feasible as an electrolyte for batteries with metallic Li as anodes. The addition of vinylene carbonate (VC) improved the compatibility of PP14TFSI-based electrolyte towards lithium anodes and enhanced the formation of solid electrolyte interphase film to protect lithium anodes from corrosion. Accordingly, Li/LiFePO4 cells initially delivered a discharge capacity of about 127 mAh g?1 at a current density of 17 mA g?1 in the ionic liquid with the addition of VC and showed better cyclability than in the neat ionic liquid. Electrochemical impedance spectroscopy disclosed that the addition of VC enhanced Li-ion diffusion and depressed interfacial resistance significantly.  相似文献   

9.
We utilize a quaternary ammonium salt-derivative ionic liquid called G.CI which is a eutectic mixture of glycerol and choline iodide as electrolyte for dye-sensitized solar cells. Such eutectic compound belongs to a new series of ionic liquid called deep eutectic solvents (DES), which possess many outstanding features compared to the traditional imidazolium-based ionic liquids including cheap raw materials, simple preparation procedures and better biocompatibility. Current–voltage characteristics of the G.CI/PMII-based binary electrolytes stand at 0.533 V on Voc, 12.0 mA cm?2 on Jsc, 0.582 on fill factor, and 3.88% cell efficiency under AM 1.5, 100 mW/cm2 illuminations. The comparable cell performance together with all the above advantages makes G.CI as a strong candidate for future electrolyte development for dye-sensitized solar cells (DSSCs).  相似文献   

10.
This study examined the electrochemical deposition and dissolution of lithium on nickel electrodes in a propylene carbonate (PC) electrolyte containing different LiN(SO2C2F5)2 concentrations. The electrolyte concentration was found to have a significant effect on the reactions occurring at the electrode. The poor cycleability of the electrodes in the low-concentration solutions was improved considerably by increasing the electrolyte concentration. Transmission electron microscopy (TEM) revealed that a high-concentration solution produces a thinner solid electrolyte interphase (SEI) on the electrodeposited lithium than a low-concentration solution, e.g., ∼35 nm in 1.28 mol kg−1 vs. ∼20 nm in 3.27 mol kg−1 solutions. Raman spectroscopy showed that the solvation number of lithium ions differed according to the electrolyte concentration. This suggests that the structure of solvated lithium ions is an important factor in suppressing dendritic lithium formation.  相似文献   

11.
LiSbO3 has been synthesized by chemical mixing followed by thermal treatment at 800 °C. Field emission scanning electron microscopy revealed bar shaped multifaceted grains, 0.5–4 μm long and 0.5–1 μm wide, that cluster together as soft agglomeration. 2032 type coin cell vs Li/Li+ shows a flat charge–discharge plateau together with low Li intercalation/de-intercalation potential (0.2/0.5 V). A high discharge capacity of 580 mA h g?1 has been obtained in the 1st cycle with 100% Coulombic efficiency. About 96% of the Coulombic efficiency is retained up to the 12th cycle, but at the 15th cycle, the Coulombic efficiency drops down to 88%. AC impedance spectroscopy shows an increase in electrolyte resistance (Rs) from 4.43 Ohm after the initial cycle to 12.4 Ohm after the 15th cycle indicating a probable dissolution of Sb into the electrolyte causing the capacity fading observed.  相似文献   

12.
A high performance cathode-supported solid oxide fuel cell (SOFC), suitable for operating in weakly humidified hydrogen and methane, has been developed. The SOFC is essentially made up by a YSZ/LSM composite supporting cathode, a thin YSZ film electrolyte, and a GDC-impregnated La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode. A gas tight thin YSZ film (∼27 μm) was formed during the co-sintering of cathode/electrolyte bi-layer at 1200 °C. The cathode-supported SOFC developed in this study showed encouraging performance with maximum power density of 0.182, 0.419, 0.628 and 0.818 W cm−2 in air/3% H2O–97% H2 (and 0.06, 0.158, 0.221 and 0.352 W cm−2 in air/3% H2O–97% CH4) at 750, 800, 850 and 900 °C, respectively. Such performance is close to that of the cathode-supported cell (0.42 W cm−2 vs. 0.455 W cm−2 in humidified H2 at 800 °C) developed by Yamahara et al. [Solid State Ionics 176 (2005) 451–456] with a Co-infiltrated supporting LSM-YSZ cathode, a (Sc2O3)0.1(Y2O3)0.01(ZrO2)0.89 (SYSZ) electrolyte of 15 μm in thickness and a SYSZ/Ni anode, indicating that the performance of the GDC-impregnated LSCM anode is comparable to that made of Ni cermet while stable in weakly humidified methane fuel.  相似文献   

13.
Layered perovskite-structure oxides LaBaCuFeO5+x (LBCFO) and LaBaCuCoO5+x (LBCCO) were prepared and the electrical conductivity and electrochemical performance were investigated as potential cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The electrical conductivity of LBCCO is much higher than that of LBCFO. Area specific resistances of LBCFO and LBCCO cathode materials on Ce0.8Sm0.2O1.9 (SDC) electrolyte are as low as 0.21 Ω cm2 and 0.11 Ω cm2 at 700 °C, respectively. The maximum power density of the LBCFO/SDC/Ni-SDC and LBCCO/SDC/Ni-SDC cells with 300 μm thick electrolytes attains 557 mW cm?2 and 603 mW cm?2 at 800 oC, respectively. Preliminary results demonstrated that the layered perovskite-structure oxides LBCFO and LBCCO are very promising cathode materials for application in IT-SOFCs.  相似文献   

14.
A high specific capacitance was obtained for α-Co(OH)2 potentiostatically deposited onto a stainless-steel electrode in 0.1 M Co(NO3)2 electrolyte at −1.0 V vs. Ag/AgCl. The structure and surface morphology of the obtained α-Co(OH)2 were studied by using X-ray diffraction analysis and scanning electron microscopy. A network of nanolayered α-Co(OH)2 sheets was obtained; the average thickness of individual α-Co(OH)2 sheets was 10 nm, and the thickness of the deposit was several micrometers. The capacitive characteristics of the α-Co(OH)2 electrodes were investigated by means of cyclic voltammetry and constant current charge–discharge cycling in 1 M KOH electrolyte. A specific capacitance of 860 F g−1 was obtained for a 0.8 mg cm−2 α-Co(OH)2 deposit. The specific capacitance did not decrease significantly for the active mass loading range of 0.1–0.8 mg cm−2 due its layered structure, which allowed easy penetration of electrolyte and effective utilization of electrode material even at a higher mass. This opens up the possibility of using such materials in supercapacitor applications.  相似文献   

15.
In this study a process has been introduced to replace traditional liquid or solid electrolyte coatings on dye-sensitized photoelectrode in solar cells. This process has more efficient diffusion of electrolyte, hence higher sensitivity. Better interfacial contact between polymer electrolyte and TiO2 photoelectrode had improved electrochemical response and ionic conductivity of cell. Conductivity of this electrode was 9.33 × 10−3 S cm−1 (at room temperature), which is much higher than the using traditional process for addition of electrolytes. It has 0.68 V open-circuit voltage and 3.19 mA cm−2 short-circuit current density. Energy conversion efficiency of this cell was about 37% higher than the cell developed with traditional processes under constant light intensity (45 mW cm−2).  相似文献   

16.
Nonenzymatic glucose fuel cells were prepared by using a polymer electrolyte membrane and Pt-based metal catalysts. A fuel cell with a cation exchange membrane (CEM), which is often used for conventional polymer electrolyte fuel cells, shows an open circuit voltage (OCV) of 0.86 V and a maximum power density (Pmax) of 1.5 mW cm?2 with 0.5 M d-glucose and humidified O2 at room temperature. The performance significantly increased to show an OCV of 0.97 V and Pmax of 20 mW cm?2 with 0.5 M d-glucose in 0.5 M KOH solution when the electrolyte membrane was changed from a CEM to an anion exchange membrane (AEM). This is due to the superior catalytic activity for both glucose oxidation and oxygen reduction in alkaline medium than in acidic medium. The anodic reaction of the fuel cell can be estimated to be the oxidation of glucose to gluconic acid via a two-electron process under these experimental conditions. The crossover of glucose through an electrolyte membrane was negligibly small compared with methanol and may not represent a serious technical problem due to the cross-reaction.  相似文献   

17.
Y-doped BaZrO3 (BZY) electrolyte films are successfully fabricated by utilizing the driving force from the anode substrate, aiming to circumvent the refractory nature of BZY materials. The BZY electrolyte film on the high shrinkage anode becomes dense after sintering even though no sintering aid is added, while the BZY electrolyte remains porous on the conventional anode substrate after the same treatment. The resulting BZY electrolyte shows a high conductivity of 4.5 × 10 3 S cm 1 at 600 °C, which is 2 to 20 times higher than that for most of BZY electrolyte films in previous reports. In addition, the fuel cell with this BZY electrolyte generates a high power output of 267 mW cm 2 at 600 °C. These results suggest the strategy presented in this study provides a promising way to prepare BZY electrolyte films for fuel cell applications.  相似文献   

18.
In this study, we introduced tungstate into solid oxide fuel cells (SOFCs) for the first time by using a La/Pr-doped CeO2 (LCP)/K2WO4 composite as the electrolyte, which exhibited remarkably enhanced grain boundary conduction compared to that of single-phase LCP. The composition dependence of the electrical conductivity was investigated. As a result, the composite with 10 wt% K2WO4 was proven to be the optimum ratio, revealing a significantly higher ionic conductivity than LCP, along with a negligible electronic conductivity. The fuel cell using the LCP/K2WO4 electrolyte displayed an encouraging performance of 500 mW cm 2 at 550 °C. These findings indicate that the LCP/K2WO4 composite is a promising electrolyte for low-temperature SOFCs.  相似文献   

19.
A novel and non-polymeric anion-inserting electrode material has been designed and prepared for promoting research on molecular ion rechargeable batteries: 5,12-diaminorubicene (DARb). The apolar core structure of a rubicene molecule has been coupled to two amino-groups for producing an original conjugated primary diamine exhibiting low affinity for polar solvents such as common carbonate-based battery electrolytes. The electrochemical reactivity of this organic molecule has been probed in a dual-ion cell configuration (vs. Li) using six different electrolyte formulations in terms of solvent (PC, EC-DMC) and lithium salt (LiPF6, LiClO4, LiTFSI). This diamino-rubicene material systematically showed a reversible electroactivity and promising performances when using 1 M LiPF6 in EC:DMC (1:1 vol.%) as the electrolyte, such as an average potential of ~ 3.4 V vs. Li+/Li0, an initial capacity of 115 mAh·g 1 and a good capacity retention over 60 cycles without any optimization.  相似文献   

20.
Mesopores tubular graphene, synthesized by template method, have unique bi-directional ions transfer channel in unstack graphene layers and high mesopore ratio, exhibiting excellent capacitance performance in the EDLC using ionic liquid electrolyte at 4 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号