首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
具有多时滞的食物链系统的Hopf分支   总被引:1,自引:0,他引:1  
讨论了具有时滞的食物链模型,首先我们得到了系统永久持续生存的条件,然后讨论系统在正平衡点附近发生Hopf分支的存在性;最后利用数值模拟证明所得结论.  相似文献   

2.
This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.  相似文献   

3.
We give a criterion for the global attractivity of a positive equilibrium of n-dimensional non-autonomous Lotka-Volterra systems with distributed delays. For a class of autonomous Lotka-Volterra systems, we show that such a criterion is sharp, in the sense that it provides necessary and sufficient conditions for the global asymptotic stability independently of the choice of the delay functions. The global attractivity of positive equilibria is established by imposing a diagonal dominance of the instantaneous negative feedback terms, and relies on auxiliary results showing the boundedness of all positive solutions. The paper improves and generalizes known results in the literature, namely by considering systems with distributed delays rather than discrete delays.  相似文献   

4.
In this paper, permanence for a class of competitive Lotka–Volterra systems is considered that have distributed delays and constant coefficients on interaction terms and have time dependent growth rate vectors with an asymptotic average. A computable necessary and sufficient condition is found for the permanence of all subsystems of the system and its small perturbations on the interaction matrix. This is a generalization from systems without delays to delayed systems of Ahmad and Lazer’s work on total permanence (S. Ahmad, A.C. Lazer, Average growth and total permanence in a competitive Lotka–Volterra system, Ann. Mat. 185 (2006) S47–S67). In addition to Ahmad and Lazer’s example showing that permanence does not imply total permanence, another example of permanent system is given having a non-permanent subsystem. As a particular case, a necessary and sufficient condition is given for all subsystems of the corresponding autonomous system to be permanent. As this condition does not rely on the delays, it actually shows the equivalence between such permanence of systems with delays and that of corresponding systems without delays. Moreover, this permanence property is still retained by systems as a small perturbation of the original system.  相似文献   

5.
A mathematical model for the quantitative analysis of cancer immune interaction, considering the role of humoral (antibody) mediated immune response with two time delays, namely maturation and interaction delays has been proposed in this paper. The aim of this work is to assess the effect of time delays on the interaction between cancerous cells and the antibodies. After categorizing the parametric plane into different regions based on the existence of equilibria, we investigate both analytically and through simulations, the stability of equilibria and the onset of sustained oscillations through Hopf bifurcations. The direction and stability of the Hopf bifurcation which occurs at the positive interior equilibrium point of the system have also been studied. It is observed that both the delays play an important role in stability switching. Appropriate therapy with a proper choice of system parameters are suggested to obtain cancer free equilibrium.  相似文献   

6.
The recent discovery of memristive neurodynamic systems holds great promise for realizing large‐scale nanoionic circuits. Development of pattern memory analysis for memristive neurodynamic systems poses several challenges. In this article, it shows that an n‐dimensional memristive neural networks with time‐varying delays can have 2n locally exponentially stable equilibria in the saturation region. In addition, local exponential stability of delayed memristive neural networks in any designated region is also characterized, which allows the locally exponentially stable equilibria to locate in the designated region. All of these criteria are very easy to be verified. Finally, the effectiveness of the results are illustrated by two numerical examples. © 2014 Wiley Periodicals, Inc. Complexity 21: 177–186, 2015  相似文献   

7.
The effects of time delays on collocated as well as noncollocated point control of discrete dynamic systems have been examined. Controllers of proportional-integral-derivative (PID) type have been considered. Analytical estimates of time delays to maintain/obtain stability for small gains have been given. Several new results dealing with the effect of time delays on collocated and noncollocated control designs are obtained. It is shown that undamped structural systems cannot be stabilized with pure velocity (or integral) feedback without time delays while using a controller which is not collocated with the sensor when the mass matrix is diagonal. However, with the appropriate choice of time delays for certain classes of commonly occurring structural systems, stable noncollocated control can be achieved. Analytical results providing the upper bound on the controller's gain necessary for stability have been presented. The theoretical results obtained are illustrated and verified with numerical examples.  相似文献   

8.
Heterogeneous duopolies with product differentiation and isoelastic price functions are examined, in which one firm is quantity setter and the other is price setter. The reaction functions and the Cournot–Bertrand (CB) equilibrium are first determined. It is shown that the best response dynamics with continuous time scales and without time delays, is always locally asymptotically stable. This stability can be, however, lost in the presence of time delays. Both fixed and continuously distributed time delays are examined, stability conditions derived and the stability regions determined and illustrated. The results are compared to Cournot–Cournot (CC) and Bertrand–Bertrand (BB) dynamics. It turns out that continuously distributed lags have a smaller destabilizing effect on the equilibria than fixed lags, and both homogeneous (CC and BB) competitions are more stable than the heterogeneous competitions.  相似文献   

9.
This paper is concerned with the existence, asymptotic behavior, strict monotonicity, and uniqueness of traveling wave fronts connecting two half-positive equilibria in a delayed lattice competitive system. We first prove the existence of traveling wave fronts by constructing upper and lower solutions and Schauder’s fixed point theorem, and then, for sufficiently small intraspecific competitive delays, prove that these traveling wave fronts decay exponentially at both infinities. Furthermore, for system without intraspecific competitive delays, the strict monotonicity and uniqueness of traveling wave fronts are established by means of the sliding method. In addition, we give the exact decay rate of the stronger competitor under some technique conditions by appealing to uniqueness.  相似文献   

10.
It is of great importance to estimate the unknown parameters and time delays of chaotic systems in control and synchronization. This paper is concerned with the uncertain parameters and time delays of chaotic systems corrupted with random noise. Parameters and time delays of such chaotic systems are estimated based on the improved particle swarm optimization algorithm for its global searching ability. Numerical simulations are given to show satisfactory results.  相似文献   

11.
We show that certain infinite-dimensional damped second-order systems of linear differential equations become unstable when arbitrarily small time delays occur in the damping.  相似文献   

12.
This paper is concerned with a diffusive and cooperative Lotka–Volterra model with distributed delays and nonlocal spatial effect. By using an iterative technique recently developed by Wang, Li and Ruan (Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations 222 (2006), 185–232), sufficient conditions are established for the existence of traveling wave front solutions connecting the zero and the positive equilibria by choosing different kernels. The result is an extension of an existing result for Fisher-KPP equation with nonlocal delay and is somewhat parallel to the existing result for diffusive and cooperative Lotka–Volterra system with discrete delays.  相似文献   

13.
This paper mainly investigates the global asymptotic stabilities of two HIV dynamics models with two distributed intracellular delays incorporating Beddington-DeAngelis functional response infection rate. An eclipse stage of infected cells (i.e. latently infected cells), not yet producing virus, is included in our models. For the first model, it is proven that if the basic reproduction number $R_0$ is less than unity, then the infection-free equilibrium is globally asymptotically stable, and if $R_0 $ is greater than unity, then the infected equilibrium is globally asymptotically stable. We also obtain that the disease is always present when $R_0 $ is greater than unity by using a permanence theorem for infinite dimensional systems. What is more, a n-stage-structured HIV model with two distributed intracellular delays, which is the extensions to the first model, is developed and analyzed. We also prove the global asymptotical stabilities of two equilibria by constructing suitable Lyapunov functionals.  相似文献   

14.
We consider a predator–prey system of Lotka–Volterra type with time delays and stage structure for prey. By analyzing the corresponding characteristic equations, the local stability of the equilibria is investigated and Hopf bifurcations occurring at the positive equilibrium under some conditions are demonstrated. The mathematical tools which enable us to obtain the sufficient conditions, guaranteeing the global asymptotical stability of the equilibria, are the well-known Kamke comparison theorem and an iteration technique. Numerical simulations are carried out to illustrate our theoretical results.  相似文献   

15.
A model of the food chain chemostat involving predator, prey and growth-limiting nutrients is considered. The model incorporates two discrete time delays in order to describe the time involved in converting processes. The Lotka–Volterra type increasing functions are used to describe the species uptakes. In addition to showing that solutions with positive initial conditions are positive and bounded, we establish sufficient conditions for the (i) local stability and instability of the positive equilibrium and (ii) global stability of the non-negative equilibria. Numerical simulation suggests that the delays have both destabilizing and stabilizing effects, and the system can produce stable periodic solutions, quasi-periodic solutions and strange attractors.  相似文献   

16.
We investigate the effect of information lags in discrete time evolutionary game dynamics on symmetric games. At the end of each period, some players obtain information about the distribution of strategies among the entire population. They update their strategies according to this information. In contrast to the previous literature (e.g., Tao and Wang (1997)) where large delays lead to instability, we show that the relationship between information lags and the stability of equilibria is not “monotonic.” In anti-coordination games under smoothed best-response dynamics, a small probability of delay can stabilize the equilibrium, while a large probability can destabilize it.  相似文献   

17.
Martin Gugat  Michael Herty 《PAMM》2014,14(1):775-776
In the design and computation of optimal controls for systems that evolve in time, usually the effect of delay is ignored. However in the implementation of the computed optimal controls in the control systems often delays occur, for example through transmission via digital communication channels. The question to be addressed is whether such small delays can have large effects on a system that is steered by an optimal control. We show that for a system that is governed by the wave equation with L2-norm minimal exact Dirichlet boundary control, for arbitrarily small time-delays there are initial states such that the terminal energy is almost twice as big as the initial energy. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Robustness of stability with respect to small delays, e.g., motivated by feedback systems in control theory, is of great theoretical and practical important, but this property does not hold for many systems. In this paper, we introduce the conception of robustness with respect to small time-varying delays for exponential stability of the non-autonomous linear systems. Sufficient conditions are given for the non-autonomous systems to be robust, and examples are provided to illustrate that the conditions are satisfied for a large class of the non-autonomous parabolic systems.  相似文献   

19.
This paper is concerned with the global robust stability of a class of delayed interval recurrent neural networks which contain time-invariant uncertain parameters whose values are unknown but bounded in given compact sets. A new sufficient condition is presented for the existence, uniqueness, and global robust stability of equilibria for interval neural networks with time delays by constructing Lyapunov functional and using matrix-norm inequality. An error is corrected in an earlier publication, and an example is given to show the effectiveness of the obtained results.  相似文献   

20.
Both discrete and distributed delays are considered in a two‐neuron system. We analyze the influence of interaction coefficient and time delay on the Hopf‐pitchfork bifurcation. First, we obtain the codimension‐2 unfolding with original parameters for Hopf‐pitchfork bifurcation by using the center manifold reduction and the normal form method. Next, through analyzing the unfolding structure, we give complete bifurcation diagrams and phase portraits, in which multistability and other dynamical behaviors of the original system are found, such as a stable periodic orbit, the coexistence of two stable nontrivial equilibria, and the coexistence of a stable periodic orbit and two stable equilibria. In addition, the obtained theoretical results are verified by numerical simulations. Finally, we perform the comparisons of the obtained results of Hopf‐pitchfork bifurcation with other Hopf‐fold bifurcation results in some biological neural systems and give the obtained mathematical results corresponding to the physical states of neurons. Copyright © 2015 JohnWiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号