首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The gas-phase reaction of ozone with unsaturated alcohols in air has been investigated at atmospheric pressure and ambient temperature (288–291 K). Cyclohexane was added to scavenge the hydroxyl radical which forms as a product of the ozone–unsaturated alcohol reaction. The reaction rate constants, in units of 10?18 cm3 molecule?1 s?1, are 16.2 ± 0.7 for (±) 3-buten-2-ol, 17.9 ± 1.8 for 1-penten-3-ol, 10.0 ± 0.3 for 2-methyl-3-buten-2-ol, 169 ± 25 for cis-2 penten-1-ol, and 251 ± 41 for 2-buten-1-ol (mixture of isomers). Substituent effects on reactivity are discussed. The reactivity of unsaturated alcohols towards ozone is similar to that of their alkene structural homologues. Implications of these results with respect to the atmospheric persistence of unsaturated alcohols are briefly discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The kinetic relationships of the hydration of an equilibrium mixture of 3-methyl-1-buten-3-ol (dimethylvinylcarbinol, DMVC) and 3-methyl-2-buten-1-ol (dimethylallyl alcohol, DMAA) with isoprene (C5H8) were investigated in aqueous solutions of sulfuric acid from 24.9 to 49.7% at 25°C. Data were obtained on the mechanism of hydration of the equilibrium mixture of DMVC and DMAA with isoprene.Deceased.N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 6, pp. 1311–1314, June, 1992.  相似文献   

3.
It is demonstrated by means of collisionally activated decomposition (CAD) that [C3H5O]+ originating from metastable [C4H8O] ions are either acylium [C2H5CO]+ (a) or hydroxycarbenium [CH2CHCHOH]+ (b). Butanone gives exclusively a but 2-methyl-2-propen-1-ol, 2-buten-1-ol, 3-buten-1-ol, butanal and 2-methylpropanal lead to ion b. Both structures a and b are produced from 3-buten-2-ol. These results are discussed in conjunction with experimental and calculated (MINDO/3) thermodynamic data.  相似文献   

4.
The reactions occurring in an equilibrium mixture of 3-methyl-1-buten-3-ol and 3-methyl-2-buten-1-ol in 24–49 % aqueous solutions of H2SO4 yield isoprene, 3-methyl-3-buten-1-ol, isobutylene, formaldehyde, 3-methylbutane-1,3-diol. Isobutylene is rapidly hydrated to give 2-methylpropan-2-ol. The presence of formaldehyde in the reaction mixture indicates that the transformations involve the reverse Prins reaction. On the basis of experimental and literature data, two most probable reaction schemes were suggested.Translated fromIzvestiya Akademii Nauk. Sertya Khimicheskaya, No. 5, pp. 867–870, May, 1995.  相似文献   

5.
Structure differentiation between [C5H8]+˙ ions, formed by electron ionization of various precursors, has been used as a test case for comparison of three experimental techniques involving collision-induced dissociation (CID). Low-energy CID in an rf-only quadrupole collision cell has been studied in the range 1–150 eV laboratory collision energy. These data have been compared with those obtained using mass-analyzed ion kinetic energy spectroscopy at 8 keV energy, and with results from dissociative charge-stripping (DCS) coupled with a second electron capture collision (EC) in order to remove intense interferences (DCS/EC). The greatest degree of structure differentiation was possible using the DCS/EC technique. The other two methods were comparable in this regard, although effects of pre-collision internal energy was apparent for collision energies much below 30 eV. Day-to-day reproducibility of spectra was most difficult to obtain for the low-energy CID technique. Of the [C5H8]+˙ ions thus tested, the isoprene molecular ion was clearly the best match to the fragment ion formed from limonene.  相似文献   

6.
A protocol for establishing standard instrument conditions for measurement of product ion MS/MS spectra from parent ions produced by electron ionization is presented. Within this protocol, the ion at m/z 231 (C5F9 +) from perfluorokerosene or perfluorotributylamine is selected as the parent ion and subjected to collision-induced dissociation. The relative intensities of product ions at m/z 69, 131, and 181 are monitored as a function of collision energy while keeping the target gas pressure constant within the range of 10?4–10?6 torr (measured), or a beam attenuation of approximately 30-70%. The collision energy at which the ion intensities for product ions at m/z 69 and 181 are equal is defined as the calibration point at that collision gas pressure; the intensity of the ion at m/z 131 is very close to this value as well. Electron ionization MS/MS spectra taken at the calibration point using two different multiquadrupole instruments show good reproducibility for several test compounds. The high degree of similarity may aid in the establishment of a MS/MS spectral library.  相似文献   

7.
The importance of the mass spectral product ion structure is highlighted in quantitative assays, which typically use multiple reaction monitoring (MRM), and in the discovery of novel metabolites. Estradiol is an important sex steroid whose quantitation and metabolite identification using tandem mass spectrometry has been widely employed in numerous clinical studies. Negative electrospray ionization tandem mass spectrometry of estradiol (E2) results in several product ions, including the abundant m/z 183 and 169. Although m/z 183 is one of the most abundant product ions used in many quantitative assays, the structure of m/z 183 has not been rigorously examined. We suggest a structure for m/z 183 and a mechanism of formation consistent with collision induced dissociation (CID) of E2 and several stable isotopes ([D4]-E2, [13C6]-E2, and [D1]-E2). An additional product ion from E2, namely m/z 169, has also been examined. MS3 experiments indicated that both m/z 183 and m/z 169 originate from only E2 [M – H] m/z 271. These ions, m/z 183 and m/z 169, were also present in the collision induced decomposition mass spectra of other prominent estrogens, estrone (E1) and estriol (E3), indicating that these two product ions could be used to elucidate the estrogenic origin of novel metabolites. We propose two fragmentation schemes to explain the CID data and suggest a structure of m/z 183 and m/z 169 consistent with several isotopic variants and high resolution mass spectrometric measurements.   相似文献   

8.
The reactions of zirconium-dience complexes, ZrCp2(s-cis-diene), with bifunctional electrophiles, i.e. α,β-unsaturated ketones, unsaturated esters and substituted oxacyclopropanes, were investigated. Reaction of ZrCp2(s-cis-isoprene) with an equivalent of 3-buten-2-one or alkyl acrylates, selectively gives 1,2-addition products. CC bond formation occured at the C(1) atom of the isoprene moiety whereas 1,3-pentadiene-, 2-methyl-1,3-pentadiene- and 2,4-dimethyl-1,3-pentadiene complexes induced the regioselective 1,2-addition at the C(4) position of the diene moiety. Phenyloxacyclopropane and 2-methyl-3-phenyl-oxacyclopropane also react with ZrCp2(isoprene) leading to CC bond formation from the C(1) atom of isoprene to the oxirane carbon bearing the phenyl group. The corresponding reactions of 2-methyl-2-butene-1,4-diylmagnesium with α,β-unsaturated carbonyl compounds were also studied and found to give quite different products.  相似文献   

9.
The ion/molecule reaction of the tolyl cation with dimethyl ether has been investigated using triple quadrupole mass spectrometry. Three isomers with [C7H7]+ composition, the 3-tolyl, benzyl, and tropylium cations, were individually selected and reacted with dimethyl ether at a pressure of 1 mtorr in the second quadrupole (Q2) collision cell. Only the tolyl ion reacted to yield a methoxylated product ion peak at m/z 122. This reaction product having m/z 122 is postulated to be identical in structure with the molecular ion of 3-methyl anisole, as supported by thermochemical data and the similarity of the collision induced dissociation (CID) daughter ion mass spectra of the product ion and the molecular ion of authentic 3-methyl anisole. The daughter ion mass spectra of the three [C7H7]+ isomers during CID, by using a triple quadrupole mass spectrometer, are nearly identical; on the other hand, the analytical approach based on the ion/molecule reaction with dimethyl ether clearly exhibits distinct gas-phase chemistry reflecting structural differences among the isomers. Sot  相似文献   

10.
The ω-hydroxyolefins 3-buten-1-ol, 3-buten-1-methyl-1-ol and 4-penten-1-ol were subjected to hydroxycarbonylation conditions in water in the presence of PdCl2(PhCN)2 and 4-8 equiv. of water soluble tris(3-sodiumsulfonatophenyl)phosphine (TPPTS), or N-bis(N′,N′-diethyl-2-aminoethyl)-4-aminomethylphenyl-diphenylphosphine (N3P). Under conditions of high conversion, the olefins primarily undergo isomerisation through a chain walking mechanism with selectivities for aldehyde ranging from 65% to 98%, with the lower values for longer chain alcohols. The lactones formed as the minor product are almost exclusively branched, indicating that in the first step 2,1-insertion is strongly favoured over 1,2-insertion. In the N3P system also linear lactone is produced at lower conversion. Running the reaction in D2O produces multiple deuterium incorporation in all positions of the carbon chain. A mechanism is discussed.  相似文献   

11.
The effect of the properties of sulphur and selenium atoms, the composition and location of substituents (―CH3, ―OCH3, ―C2H5, and ―C3H6―((N+Br?)C5H5)), and the charge state on the collision induced dissociation (CID) behaviour of ions generated by electrospray ionization (ESI) of thiocarbocyanine and selenocarbocyanine dyes have been investigated. The results show that, for of all the examined singly charged ions, the main dissociation channel was related to the formation of distonic ions, generated as a result of cleavages within the dimethine bridge. In the case of doubly charged ions (with propyl‐pyridinium substituents), competition between fragmentation processes related to charges located at different nitrogen atoms has been observed. The S/Se replacement also has an impact on the CID behaviour of the examined carbocyanine dyes. On the basis of the performed CID MS/MS experiments, general rules for the CID of thiocarbocyanine and selenocarbocyanine dyes have been proposed.  相似文献   

12.
Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MSn, n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides 18O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS3 CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MSn CID (n = 3 – 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.
Figure
?  相似文献   

13.
The doubly charged isomeric ions [C6H7N]2+ formed from 2-, 3- and 4-methylpyridine and aniline were investigated via their unimolecular charge separation reactions and by electron capture induced decompositions (ECID). The ECID spectra were compared with the collision induced decomposition (CID) spectra of the singly charged ions in an attempt to investigate the structure of the doubly charged ions. The four isomers could be unambiguously identified by their unimolecular charge separations. These differences were greater than in the mass spectra, ECID spectra or CID spectra of singly charged ions.  相似文献   

14.
Japan The mechanism for the formation of molecular ions M under fast-atom bombardment (FAB) conditions with a liquid matrix is discussed on the basis of the mass spectra of pyrene, coronene, and fullerene C60 obtained by using electron impact, gas-phase fast-atom bombardment, and gas-phase fast-molecule bombardment techniques. The obtained results suggest that formation of the M ions under FAB conditions is not due to direct collisions between analytes M and fast atoms A, but is due to collision interactions between M and recoiling matrix molecules B or matrix ions. It has been confirmed, furthermore, that the FAB conditions with a liquid matrix are sufficient in energy for formation of singly charged ions M and insufficient for the formation of multiply charged ions M z+ (z=2, 3) of pyrene, coronene, and C60.  相似文献   

15.
《Tetrahedron: Asymmetry》2006,17(13):1958-1962
The reduction of 3-methyl-4-phenyl-3-buten-2-one and its phenyl-substituted derivatives by microorganisms was investigated. Growing cells of Mortierella isabellina DSM1414 and Geotrichum candidum LOCK 105 strains reduced α,β-unsaturated ketones to the corresponding secondary alcohols in high enantiomeric excess (94–99%), whereas the Rhodotorula rubra M18D3 strain converted the same compounds into optically active ketones as the major products with only trace amounts of the corresponding saturated and unsaturated alcohols.  相似文献   

16.
17.
A high content molecular fragmentation for the analysis of phosphatidylcholines (PC) was achieved utilizing a two-stage [trap (first generation fragmentation) and transfer (second generation fragmentation)] collision-induced dissociation (CID) in combination with travelling-wave ion mobility spectrometry (TWIMS). The novel aspects of this work reside in the fact that a TWIMS arrangement was used to obtain a high level structural information including location of fatty acyl substituents and double bonds for PCs in plasma, and the presence of alkali metal adduct ions such as [M?+?Li]+ was not required to obtain double bond positions. Elemental compositions for fragment ions were confirmed by accurate mass measurements. A very specific first generation fragment ion m/z 577 (M-phosphoryl choline) from the PC [16:0/18:1 (9Z)] was produced, which by further CID generated acylium ions containing either the fatty acyl 16:0 (C15H31CO+, m/z 239) or 18:1 (9Z) (C17H33CO+, m/z 265) substituent. Subsequent water loss from these acylium ions was key in producing hydrocarbon fragment ions mainly from the α-proximal position of the carbonyl group such as the hydrocarbon ion m/z 67 (+H2C-HC?=?CH-CH?=?CH2). Formation of these ions was of important significance for determining double bonds in the fatty acyl chains. In addition to this, and with the aid of 13C labeled lyso-phosphatidylcholine (LPC) 18:1 (9Z) in the ω-position (methyl) TAP fragmentation produced the ion at m/z 57. And was proven to be derived from the α-proximal (carboxylate) or distant ω-position (methyl) in the LPC.  相似文献   

18.
Collision-induced dissociation (CID) of deprotonated hexose-containing disaccharides (m/z 341) with 1–2, 1–4, and 1–6 linkages yields product ions at m/z 221, which have been identified as glycosyl-glycolaldehyde anions. From disaccharides with these linkages, CID of m/z 221 ions produces distinct fragmentation patterns that enable the stereochemistries and anomeric configurations of the non-reducing sugar units to be determined. However, only trace quantities of m/z 221 ions can be generated for 1–3 linkages in Paul or linear ion traps, preventing further CID analysis. Here we demonstrate that high intensities of m/z 221 ions can be built up in the linear ion trap (Q3) from beam-type CID of a series of 1–3 linked disaccharides conducted on a triple quadrupole/linear ion trap mass spectrometer. 18O-labeling at the carbonyl position of the reducing sugar allowed mass-discrimination of the “sidedness” of dissociation events to either side of the glycosidic linkage. Under relatively low energy beam-type CID and ion trap CID, an m/z 223 product ion containing 18O predominated. It was a structural isomer that fragmented quite differently than the glycosyl-glycolaldehydes and did not provide structural information about the non-reducing sugar. Under higher collision energy beam-type CID conditions, the formation of m/z 221 ions, which have the glycosyl-glycolaldehyde structures, were favored. Characteristic fragmentation patterns were observed for each m/z 221 ion from higher energy beam-type CID of 1–3 linked disaccharides and the stereochemistry of the non-reducing sugar, together with the anomeric configuration, were successfully identified both with and without 18O-labeling of the reducing sugar carbonyl group.  相似文献   

19.
Upon collision‐induced activation, gaseous sodium adducts generated by electrospray ionization of disodium salts of 1,2‐ 1,3‐, and 1,4‐benzene dicarboxylic acids (m/z 233) undergo an unprecedented expulsion of CO2 by a rearrangement process to produce an ion of m/z 189 in which all three sodium atoms are retained. When isolated in a collision cell of a tandem‐in‐space mass spectrometer, and subjected to collision‐induced dissociation (CID), only the m/z 189 ions derived from the meta and para isomers underwent a further CO2 loss to produce a peak at m/z 145 for a sodiated arene of formula (Na3C6H4)+. This previously unreported m/z 145 ion, which is useful to differentiate meta and para benzene dicarboxylates from their ortho isomer, is in fact the sodium adduct of phenelenedisodium. Moreover, the m/z 189 ion from all three isomers readily expelled a sodium radical to produce a peak at m/z 166 for a radical cation [(?C6H4CO2Na2)+], which then eliminated CO2 to produce a peak at m/z 122 for the distonic cation (?C6H4Na2)+. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The losses of methyl and ethyl through the intermediacy of the [2-butanone]+˙ ion are shown to be the dominant metastable decomposition of 14 of 19 [C4H8O]+˙ ions examined. The ions that decompose via the [2-butanone]+˙ structure include ionized aldehydes, unsaturated and cyclic alcohols and enolic ions. [Cyclic ether]+˙ [cyclopropylmethanol]+˙ and [2-methyl-1-propen-1-ol]+˙ ions do not decompose through ionized 2-butanone. The rearrangements of various [C4H8O]+˙ ions the the 2-butanone ion were investigated by means of deuterium labeling. Those pathways involve up to eight steps. Ions with the oxygen on the end carbon rearrange to a common structure or mixture of structures. Those ions which ultimately rearrange to the [2-butanone]+˙ ion then undergo oxygen shifts from the terminal to the second and third carbons at about equal rates. However, this oxygen shift does not precede the losses of water and ethylene. Losses of water and ethylene were unimportant for ions with the oxygen initially on the second carbon. Ionized n-butanal and cyclobutanol, but not other [C4H8O]+˙ ions, undergo reversible hydrogen exchange between the oxygen and the terminal carbon. Rearrangement of ionized n-butanal to the [cyclobutanol]+˙ ion is postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号