首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Antibody binding to bovine serum albumin (BSA) and human serum albumin (HSA) immobilized onto gold nanoparticles was studied by means of localized surface plasmon resonance (LSPR) spectroscopy. Amine-modified glass was prepared by self-assembly of amine-terminated silane on substrate, and gold (Au) nanoparticles were deposited on the amine-modified glass substrate. Au nanoparticles deposited on the glass surface were functionalized by BSA and HSA. BSA immobilization was confirmed by LSPR spectroscopy in conjunction with surface-enhanced Raman scattering spectroscopy. Then, LSPR response attributable to the binding of anti-BSA and anti-HSA to BSA- and HSA-functionalized Au nanoparticles, respectively, was examined. Anti-HSA at levels larger than ∼10 nM could be detected by HSA-immobilized chips with LSPR optical response, which was saturated at concentrations greater than ∼650 nM of anti-HSA. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible to authorized users.  相似文献   

2.
静电组装金纳米粒子制备局域表面等离子体共振传感膜   总被引:4,自引:1,他引:3  
采用聚电解质自组装技术制备局域表面等离子体共振(LSPR)传感膜的方法, 在玻璃基片上依次沉积聚电解质PDDA, PSS和PVTC, 并通过静电吸附构建胶体金纳米粒子自组装膜形成LSPR传感膜. 利用扫描电镜对LSPR传感膜表面形貌以及膜中金纳米粒子的粒径进行了表征, 同时通过紫外-可见消光光谱对其灵敏度和渗透深度等重要参数进行检测. 研究结果表明, 所制备的LSPR传感膜粒子分布均匀、单分散性好、稳定性高、重现性好; 消光峰位对样品溶液折射率的检测灵敏度为71 nm/RIU, 相应的峰强检测灵敏度为0.21 AU/RIU, 对表面吸附层的渗透深度约为16 nm.  相似文献   

3.
A comparative analysis of the properties of two optical biosensor platforms: (1) the propagating surface plasmon resonance (SPR) sensor based on a planar, thin film gold surface and (2) the localized surface plasmon resonance (LSPR) sensor based on surface confined Ag nanoparticles fabricated by nanosphere lithography (NSL) are presented. The binding of Concanavalin A (ConA) to mannose-functionalized self-assembled monolayers (SAMs) was chosen to highlight the similarities and differences between the responses of the real-time angle shift SPR and wavelength shift LSPR biosensors. During the association phase in the real-time binding studies, both SPR and LSPR sensors exhibited qualitatively similar signal vs time curves. However, in the dissociation phase, the SPR sensor showed an approximately 5 times greater loss of signal than the LSPR sensor. A comprehensive set of nonspecific binding studies demonstrated that this signal difference was not the consequence of greater nonspecific binding to the LSPR sensor but rather a systematic function of the Ag nanoparticle's nanoscale structure. Ag nanoparticles with larger aspect ratios showed larger dissociation phase responses than those with smaller aspect ratios. A theoretical analysis based on finite element electrodynamics demonstrates that this results from the characteristic decay length of the electromagnetic fields surrounding Ag nanoparticles being of comparable dimensions to the ConA molecules. Finally, an elementary (2 x 1) multiplexed version of an LSPR carbohydrate sensing chip to probe the simultaneous binding of ConA to mannose and galactose-functionalized SAMs has been demonstrated.  相似文献   

4.
This work reports the systematic preparation of biosensors through the use of functionalized glass substrates, noble metal gold colloid, and measurement by localized surface plasmon resonance (LSPR). Glass substrate was modified through chemical silanization, and the density of gold colloid was carefully controlled by optimizing the conditions of silanization through the use of mixed silanes and selective mixing procedures. At this point, samples were exposed to bioreagents and changes in the shallow dielectric constant around the particles were observed by dark-field spectroscopy. Biological binding of high affinity systems (biotin/streptavidin and antigen/antibody) was subsequently investigated by optimizing coating layers, receptor concentration profiling, and finally quantitative determination of the analyte of interest, which in this case was a small organic molecule—the widely used, synthetic anabolic steroid called stanozolol. For this system, high specificity was achieved (>97%) through extensive nonspecific binding tests, with a sensitivity measurable to a level below the minimum required performance level (MRPL) as determined by standard chromatographic methods. Analytical best-fit parameters of Hillslope and regression coefficient are also commented on for the final LSPR biosensor. The LSPR biosensor showed good reproducibility (<5% RSD) and allowed for rapid preparation of calibration curves and determination of the analyte (measurement time of each sample ca. 2 min). As an alternative method for quantitative steroidal analysis, this approach significantly simplifies the detection setup while reducing the cost of analysis. In addition the system maintains comparable sensitivity to standard surface plasmon resonance methods and offers great potential for miniaturization and development of multiplexed devices. Figure Schematic of sensor configuration indicating both min and max controls and associatedexample localized resonance curves Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The paper reports on a novel localized surface plasmon resonance (LSPR) substrate architecture for the immobilization and detection of histidine-tagged peptides. The LSPR interface consists of an ITO (indium tin oxide) substrate coated with gold nanostructures. The latter are obtained by thermal deposition of a thin (2 nm thick) gold film followed by post-annealing at 500 °C. The LSPR interface was coated with poly[3-(pyrrolyl)carboxylic acid] thin films using electrochemical means. The ability of the LSPR interfaces coated with poly[3-(pyrrolyl)carboxylic acid] to chelate copper ions was investigated. Once loaded with metal ions, the modified LSPR interface was able to bind specifically to histidine-tagged peptides. The binding process was followed using LSPR.  相似文献   

6.
L Guo  Y Yin  R Huang  B Qiu  Z Lin  HH Yang  J Li  G Chen 《Lab on a chip》2012,12(20):3901-3906
The impact of chiral compounds on pharmacological and biological processes is well known. With the increasing need for enantiomerically pure compounds, effective strategies for enantioseparation and chiral discrimination are in great demand. Herein we report a simple but efficient approach for the enantioselective determination of chiral compounds based on a localized surface plasmon resonance (LSPR) biosensor integrated with a microfluidic chip. A glass microfluidic chip with an effective volume of ~0.75 μL was fabricated for this application. Gold nanorods (AuNRs) with an aspect ratio of ~2.6 were self-assembled onto the surface of the inner wall of the chip to serve as LSPR transducers, which would translate the analyte binding events into quantitative concentration information. Human α-thrombin was immobilized onto the AuNR surface for enantioselective sensing of the enantiomers of melagatran. The proposed sensor was found to be highly selective for RS-melagatran, while the binding of its enantiomer, SR-melagatran, to the sensor was inactive. Under optimal conditions, the limit of detection of this sensor for RS-melagatran was found to be 0.9 nM, whereas the presence of 10?000-fold amounts of SR-melagatran did not interfere with the detection. To the best of our knowledge, this is the first demonstration of an LSPR-based enantioselective biosensor.  相似文献   

7.
Inuta M  Arakawa R  Kawasaki H 《The Analyst》2011,136(6):1167-1176
A self-assembled film of gold nanoparticles (AuNPs) with a raspberry-like morphology was prepared on a glass plate by the layer-by-layer thermal annealing of multilayer films of AuNPs. It was possible to control the morphology of the obtained films of AuNPs by changing the annealing temperature, duration of annealing, and number of layers. On investigating the plasmonic properties of these films, we found that AuNP films with a raspberry-like morphology yielded the highest refractive index unit, which is a critical parameter in localized surface plasmon resonance (LSPR) sensing, as compared to other types of AuNP films. Self-assembled AuNP films with a raspberry-like morphology were subsequently functionalized with 11-mercaptoundecanoic acid (MUA) to enable the binding of lysozyme to the MUA-modified Au surface. The superior limit of detection for the LSPR sensing of lysozyme in a buffer solution was found to be in the picomolar range (~10(-12) M). The high sensitivity observed in the region was attributed to the raspberry-like morphology, where the AuNPs were packed closely together, and the electromagnetic field confinement was most intense (i.e., at hot spots). The MUA-modified, self-assembled AuNP films with a raspberry-like morphology were finally used in the combination analysis of LSPR sensing and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the selective detection and identification of lysozyme in human serum.  相似文献   

8.
In this study, gold nanoparticles (GNP) were stabilized for the first time as dimers by a conducting polymer (CP). The morphology of kissing particles was examined by high-resolution transmission electronic microscopy (HRTEM). The broad-band localized surface plasmon resonance (LSPR) tunable by solvent variation and molecular binding was demonstrated by UV-vis measurement. The sensitivity of the longitudinal LSPR to the surrounding media or the binding of a biomolecule was 6 times higher than that of the transversal LSPR. A homogeneous bioassay was directly developed from the highly stable GNP-CP dimers with LSPR as prober, and protein sensing with detection limit well below 100 ng/mL was achieved.  相似文献   

9.
A disulfide-carrying telomer with many pendent N-acetylglucosamine (GlcNAc) residues (Cys-PMHGlcNAc) was obtained by photo-polymerization of 1-(6'-methacryloylaminohexyl)-2-N-acetoamido-2-deoxy d-glucopyranoside) (MHGlcNAc) using a benzyl N,N-diethyldithiocarbamoyl (BDC) derivative that shows abilities of initiation, transfer, and termination (iniferter). The disulfide-carrying telomer was accumulated on a monolayer of colloidal Au on a glass substrate, and the interaction of wheat germ agglutinin (WGA) with GlcNAc residue at the polymer brush-solution interface was examined by using the localized surface plasmon resonance (LSPR) technique. For comparison, an amphiphile carrying many pendent GlcNAc residues was also prepared with MHGlcNAc and a lipophilic radical initiator and was incorporated in a phospholipid liposome to examine interaction of the GlcNAc residue with WGA on the liposome surface using turbidity measurements. Both the colloidal gold optical device and the liposome showed a concentration-dependent specific binding of WGA, and the GlcNAc-carrying liposome had a detection limit of 100 nM for WGA, whereas that of the colloidal gold device was 10nM. The sugar-carrying telomer-coated device examined here is not only useful as a simple biosensor chip but is also expected to expand our knowledge of bio-related phenomena at the liquid-telomer brush interfaces on a colloidal Au.  相似文献   

10.
Li Sun  Qianhua Li  Wenjie Tang  Junwei Di  Ying Wu 《Mikrochimica acta》2014,181(15-16):1991-1997
We report on an effective strategy for the enhancement in the sensitivity of localized surface plasmon resonance (LSPR). It is based on the use of gold-silver core-shell nanorods (Au-Ag-cs-NRs) immobilized on a glass substrate. The nanorods arrange themselves by self-assembly, and the resulting LSPR band of the Au-Ag-cs-NRs becomes sharper and more intense. The sensitivity to refractive index (RI) of the Au-Ag-cs-NRs on the glass support is ~281 nm per RI unit, which is better by about 30 % compared to gold nanorods immobilized on glass substrate. The system was applied to study the streptavidin-biotin affinity system which is widely used in biosciences. It is found that the red-shift of the LSPR peak linearly increases with the concentration of streptavidin in the 95 pM to 1.7 μM concentration range. The detection limit (at an S/N ratio of 3) is at 35 pM. The results reveal the merits of this approach in terms of label-free optical affinity sensing. Figure
Au-Ag core-shell nanorods self-assembled on glass substrates. The refractive index sensitivity was enhanced obviously. A strategy to amplify the response and fabricate a label-free optical biosensor  相似文献   

11.
The use of an amorphous silicon-carbon alloy overcoating on silver nanostructures in a localized surface plasmon resonance (LSPR) sensing platform allows for decreasing the detection limit by an order of magnitude as compared to sensors based on gold nanostructures deposited on glass. In addition, silver based multilayer structures show a distinct plasmonic behaviour as compared to gold based nanostructures, which provides the sensor with an increased short-range sensitivity and a decreased long-range sensitivity.  相似文献   

12.
采用自组装表面等离子体子共振(SPR)传感装置,固定入射角,以波长为变量,以CCD为检测系统,用对金和抗体均有较强吸附作用的葡萄球菌A蛋白作为基底膜,观测了人心肌肌钙蛋白I的抗体和抗原之间免疫反应的动力学过程,并进行了人心肌肌钙蛋白I的定量测定.结果表明,人心肌肌钙蛋白I的浓度在5.0~50μg/L范围内与传感器的响应值呈线性关系.  相似文献   

13.
In this study, a new type of localized surface plasmon resonance (LSPR) sensing substrate for phosphopeptides was explored. It has been known that LSPR response for target species is larger in the near-infrared region (NIR) than in the visible region of the electromagnetic spectrum. Several types of noble metal nanoparticles (NPs) with NIR absorption capacities have been previously demonstrated as effective LSPR-sensing nanoprobes. Herein, we demonstrate a straightforward approach with improved sensitivity by simply using layer-by-layer (LBL) spherical Au NPs self-assembled on glass slides as the LSPR-sensing substrates that are responsive in the NIR region of the electromagnetic spectrum. The modified glass slide acquired an LSPR absorption band in the NIR, which resulted from the dipole–dipole interactions between Au NPs. To enable the chip to sense phosphopeptides, the surface of the glass chip was spin-coated with thin titania film (TiO2-Glass@Au NPs). Absorption spectrophotometry was employed as a detection tool. Tryptic digest of α-casein was used as a model sample. The feasibility of using the new LSPR approach for detecting a potential risk factor leading to cancers (i.e., phosphorylated fibrinopeptide A) directly from human serum samples was demonstrated. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to confirm the results.  相似文献   

14.
Sun  Li  Li  Qianhua  Tang  Wenjie  Di  Junwei  Wu  Ying 《Mikrochimica acta》2014,181(15):1991-1997

We report on an effective strategy for the enhancement in the sensitivity of localized surface plasmon resonance (LSPR). It is based on the use of gold-silver core-shell nanorods (Au-Ag-cs-NRs) immobilized on a glass substrate. The nanorods arrange themselves by self-assembly, and the resulting LSPR band of the Au-Ag-cs-NRs becomes sharper and more intense. The sensitivity to refractive index (RI) of the Au-Ag-cs-NRs on the glass support is ~281 nm per RI unit, which is better by about 30 % compared to gold nanorods immobilized on glass substrate. The system was applied to study the streptavidin-biotin affinity system which is widely used in biosciences. It is found that the red-shift of the LSPR peak linearly increases with the concentration of streptavidin in the 95 pM to 1.7 μM concentration range. The detection limit (at an S/N ratio of 3) is at 35 pM. The results reveal the merits of this approach in terms of label-free optical affinity sensing.

Au-Ag core-shell nanorods self-assembled on glass substrates. The refractive index sensitivity was enhanced obviously. A strategy to amplify the response and fabricate a label-free optical biosensor

  相似文献   

15.
A new detection mechanism has been developed for low molecular weight substrate binding to heme proteins based on resonance localized surface plasmon spectroscopy. Cytochrome P450 has strong electronic transitions in the visible wavelength region. Upon binding of a substrate molecule (e.g., camphor), the absorption band of cytochrome P450 shifts to shorter wavelength. The event of camphor binding to a nanoparticle surface modified with cytochrome P450 protein receptors is monitored using UV-vis spectroscopy. It is observed for the first time that the binding of the substrate molecules to the protein receptor induces a blue-shift in the localized surface plasmon resonance (LSPR) of the nanosensors. The coupling between the molecular resonance of the substrate-free and substrate-bound cytochrome P450 proteins and the nanoparticles' LSPR leads to a highly wavelength-dependent LSPR response. When the LSPR of the nanoparticles is located at a wavelength distant from the cytochrome P450 resonance, an average of approximately 19 nm red-shift is observed upon cytochrome P450 binding to the nanoparticles and a approximately 6 nm blue-shift is observed upon camphor binding However, this response is significantly amplified approximately 3 to 5 times when the LSPR of the nanoparticles is located at a slightly longer wavelength than the cytochrome P450 resonance, that is, a 66.2 nm red-shift upon cytochrome P450 binding and a 34.7 nm blue-shift upon camphor binding. This is the first example of the detection of small molecules binding to a protein modified nanoparticle surface on the basis of LSPR.  相似文献   

16.
《中国化学快报》2022,33(6):3144-3150
The simplification of localized surface plasmon resonance (LSPR) detection can further promote the development of optical biosensing application in point-of-care testing. In this study, we proposed a simple light emitting diode (LED) based single-wavelength LSPR sensor modulated with bio-electron transfers for the detection of electroactive biomolecules. Indium tin oxide electrode loaded with nanocomposites of polyaniline coated gold nanorod was used as LSPR chip, and the applied electric potential was scanned at the LSPR chip for single-wavelength LSPR biosensing. Under the scanning of applied potentials, biological electron transfer of redox reaction was employed to demonstrate the bioelectronic modulation of single-wavelength LSPR for selective electroactive biomolecule detection. Without any additional recognition material, electroactive biomolecules uric acid and dopamine were detected directly with a sensitivity of 5.05 μmol/L and 7.11 μmol/L at their specific oxidation potentials, respectively. With the simplified optical configuration and selective bioelectronic modulation, the single-wavelength LSPR sensor is promising for the development of simple, low-cost, and high specificity optical biosensor for point-of-care testing of electroactive biomolecules.  相似文献   

17.
Ultrathin (typically < or = 10-nm thick) gold island films evaporated on transparent substrates show a prominent localized surface plasmon (SP) extinction in the visible-to-NIR range. Changes in the dielectric properties of the contacting medium influence the SP absorption band, providing a scheme for optical sensing based on refractive index change. In the present work, the gas sensing capability of gold island based localized surface plasmon resonance (LSPR) transducers was explored using polymeric coatings as the active interface. LSPR transducers were fabricated by spin-coating of polystyrene (PS) or polystyrene sulfonic acid, sodium salt (PSS) onto 5-nm-thick (nominal thickness) gold island films evaporated on silanized glass and annealed. Detailed characterization of the transducers was carried out using high-resolution scanning electron microscopy, cross-sectional transmission electron microscopy, and in situ atomic force microscopy under controlled atmosphere. The hydrophobic PS film exhibits swelling and significant thickness increase upon exposure to chloroform vapor and little or no change in water vapor, whereas the hydrophilic PSS film shows the opposite behavior when exposed to the same vapors. Polymer swelling upon absorption of vapors of good solvents shows a net effect of lowering the effective refractive index in the vicinity of the gold islands, manifested as a characteristic decrease of the SP band intensity and a blue shift of the band maximum. The response, measured for four different vapors, is fast (approximately 15 s) and reversible. It is shown that gold island systems coated with polymeric films can be applied to vapor recognition in an array configuration.  相似文献   

18.
The bright colours of noble metal particles have attracted considerable interest since historical times, where they were used as decorative pigments in stained glass windows. More recently, the tuneable optical properties of metal nanoparticles and their addressability via spectroscopic techniques have brought them back into the forefront of fundamental and applied research fields. Much of the recent attention concerning metal nanoparticles such as gold and silver has been their use as small-volume, ultra-sensitive label-free optical sensors. Plasmonic nanoparticles act in this case as transducers that convert changes in the local refractive index into spectral shifts of the localized surface plasmon resonance (LSPR) band. This LSPR-shift assay is a general technique for measuring binding affinities and rates from any molecule that induces a change in the local refractive index around the metallic nanostructures. By attaching molecular recognition elements (chemical or biological ligands) on the nanostructures, specificity and selectivity to the analyte of interest are introduced into the nanosensor. In this review, we will discuss the different methods used to fabricate plasmonic nanosensors. A special emphasis will be given to techniques used to link plasmonic nanostructures to surfaces. While the difference between colorimetric and refractive index sensing approaches will be briefly described, the importance to distinguish between bulk refractive index (RI) sensing and molecular near-field refractive index sensing will be discussed. The recent progress made in the development of novel surface functionalization strategies together with the formation of optically and mechanically stable LSPR sensors will be highlighted.  相似文献   

19.
Localized surface plasmon resonance (LSPR) excitation on the photochromic reaction of a diarylethene derivative (DE) was studied by surface enhanced Raman scattering (SERS). UV and visible light irradiations transform reversibly DE between open-form (OF) and closed-form (CF) isomers, respectively. A mixture of PMMA and DE (either OF or CF isomer) was spin-coated onto gold nanorods (GNRs) arrays, designed by electron beam lithography, with two localized surface plasmon resonances (LSPR) at distinct wavelengths, due to their anisotropy. The photochromic reaction rates from CF to OF isomers, under LSPR excitation, were monitored from SERS spectral changes under different polarizations, on the same GNR substrate to compare the effect of LSPR field strength. It appears that the photoisomerization rate was faster when LSPR was excited with the polarization parallel to the GNR long axis. The present results highlight a potential genuine mechanism, from near field LSPR excitation, involved in the photochromic enhancement of diarylethene photochromes.  相似文献   

20.
A dithiolated random copolymer with pendent phenylboronic acid residues (Cys-Poly(3-acrylamidophenylboronic acid-co-2-dimethylaminopropyl methacrylamide), Cys-Poly(APBA-co-DMAPMA)) obtained by photo-iniferter method was accumulated as a polymer brush on a cap-shaped gold particles deposited on a vacuum-evaporated gold film, and the usefulness of the polymer brush as a sensing element for glycoprotein, ovalbumin (OVA), was examined by using UV-vis spectroscopy with a help of surface plasmon resonance. A similar system was constructed with a dithiolated mannose-carrying polymer, dithiolated-poly(2-methacryloyloxyethyl-D-mannopyranoside) (DT-PMEMan), prepared by the atom transfer radical polymerization (ATRP). The brush composed of this polymer was examined as a sensing element for lectin, concanavalin A (Con A). The sensor cells modified with Cys-Poly(APBA-co-DMAPMA) and DT-PMEMan showed a concentration-dependent binding of OVA and Con A, respectively, with a comparable detection limit to those with a monolayer of polymer brush-coated gold particle deposited on a glass substrate. Using this system, it can be expected to open a new perspective to various functional polymer brushes fixed to the cap-shaped gold particle on a solid substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号