首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coli is one of the most commonly used host strains for recombinant protein production. More and more research works on the production of recombinant protein indicate that extracellular production throughout a culture medium is more convenient and attractive compared to intracellular production. In present work, inducing temperature and isopropyl β-d-1-thiogalactopyranoside (IPTG) concentration were investigated to decrease the formation of inclusion body and increase the amount of soluble recombinant cutinase initially. Enzyme activity in the culture medium reached to 118.9 U/ml at 64 h of culture, and no inclusion body was detected in cytoplasm under the inducement condition of 0.2 mM IPTG and 30°C. In addition, it was found that a large amount of cutinase had been accumulated in periplasm since 16-h cultivation under the same inducement condition. Therefore, glycine and surfactant sodium taurodeoxycholate (TDOC) were further used to promote the leakage of recombinant cutinase from periplasm. Supplied with 100 mM glycine and 1 mM TDOC, the amount of cutinase in periplasm decreased remarkably, and the activity in the culture medium reached to 146.2 and 149.2 U/ml after 54 h of culturing, respectively.  相似文献   

2.
The display of PHB depolymerase (PhaZ(RpiT1) ) from R. pickettii T1 on the surface of E. coli JM109 cells is realized using OprI of P. aeruginosa as the anchoring motif. The fusion protein is stably expressed and its surface localization is verified by immunofluorescence microscopy. The displayed PhaZ(RpiT1) retains its cleaving ability for soluble substrates as well as its ability to adsorb to the PHB surface, and also remains catalycically active in the degradation of insoluble polyester materials, in spite of the possible suppression of the enzyme movement on the polymer surface. The results demonstrate that PhaZ(RpiT1) -displaying E. coli shows potential for use as a whole-cell biocatalyst for the production of (R)-3-hydroxybutyrate monomers from insoluble PHB materials.  相似文献   

3.
4.
In Fe- and Mn-dependent superoxide dismutases (SODs), second-sphere residues have been implicated in precisely tuning the metal ion reduction potential to maximize catalytic activity (Vance, C. K.; Miller, A.-F. J. Am. Chem. Soc. 1998, 120, 461-467). In the present study, spectroscopic and computational methods were used to characterize three distinct Fe-bound SOD species that possess different second-coordination spheres and, consequently, Fe(3+/2+)reduction potentials that vary by approximately 1 V, namely, FeSOD, Fe-substituted MnSOD (Fe(Mn)SOD), and the Q69E FeSOD mutant. Despite having markedly different metal ion reduction potentials, FeSOD, Fe(Mn)SOD, and Q69E FeSOD exhibit virtually identical electronic absorption, circular dichroism, and magnetic circular dichroism (MCD) spectra in both their oxidized and reduced states. Likewise, variable-temperature, variable-field MCD data obtained for the oxidized and reduced species do not reveal any significant electronic, and thus geometric, variations within the Fe ligand environment. To gain insight into the mechanism of metal ion redox tuning, complete enzyme models for the oxidized and reduced states of all three Fe-bound SOD species were generated using combined quantum mechanics/molecular mechanics (QM/MM) geometry optimizations. Consistent with our spectroscopic data, density functional theory computations performed on the corresponding active-site models predict that the three SOD species share similar active-site electronic structures in both their oxidized and reduced states. By using the QM/MM-optimized active-site models in conjunction with the conductor-like screening model to calculate the proton-coupled Fe(3+/2+) reduction potentials, we found that different hydrogen-bonding interactions with the conserved second-sphere Gln (changed to Glu in Q69E FeSOD) greatly perturb the p K of the Fe-bound solvent ligand and, thus, drastically affect the proton-coupled metal ion reduction potential.  相似文献   

5.
6.
7.
Qureshi A  Gurbuz Y  Niazi JH 《The Analyst》2011,136(13):2726-2734
A new capacitive biochip was developed using carboxy-CNT activated gold interdigitated (GID) capacitors immobilized with E. coli cells for the detection of cellular stress caused by chemicals. Here, acetic acid, H(2)O(2) and NaCl were employed as model chemicals to test the biochip and monitored the responses under AC electrical field by non-Faradaic electrochemical impedance spectroscopy (nFEIS). The electrical properties of E. coli cells under different stresses were studied based on the change in surface capacitance as a function of applied frequency (300-600 MHz) in a label-free and noninvasive manner. The capacitive response of the E. coli biochip under normal conditions exhibited characteristic dispersion peaks at 463 and 582 MHz frequencies. Deformation of these signature peaks determined the toxicity of chemicals to E. coli on the capacitive biochip. The E. coli cells were sensitive to, and severely affected by 166-498 mM (1-3%) acetic acid with declined capacitance responses. The E. coli biochip exposed to H(2)O(2) exhibited adaptive responses at lower concentrations (<2%), while at a higher level (882 mM, 3%), the capacitance response declined due to oxidative toxicity in cells. However, E. coli cells were not severely affected by high NaCl levels (513-684 mM, 3-4%) as the cells tend to resist the salt stress. Our results demonstrated that the biochip response at a particular frequency enabled the determination of the severity of the stress imposed by chemicals and it can be potentially applied for monitoring unknown chemicals as an indicator of cytotoxicity.  相似文献   

8.
The design of stable redox active liposomes where the organometallic electroactive pendent was covalently bound to the phospholipid headgroup through a phospholipase D (PLD)-catalyzed transphosphatidylation reaction between a choline-bearing phospholipid and a primary alcohol containing a ferrocene derivative is reported. The functionalization of a liposome surface with this organometallic redox phospholipid allowed the study of membrane-bound electrochemical reactions, which are important in the design of redox-sensitive liposome delivery systems.  相似文献   

9.
The synthesis of optically active lipopeptide derivatives has been accomplished by the use of chiral glycerol derivatives. Lipopeptide derivatives with (R)-glycerol moieties showed higher mitogenic activities than those with the (S)-configuration. N-2,2,2-Trichloroethoxycarbonyl lipopeptide derivatives increased mitogenic activity.  相似文献   

10.
We investigated the charge transfer interactions between luminescent quantum dots (QDs) and redox active dopamine. For this, we used pH-insensitive ZnS-overcoated CdSe QDs rendered water-compatible using poly (ethylene glycol)-appended dihydrolipoic acid (DHLA-PEG), where a fraction of the ligands was amine-terminated to allow for controlled coupling of dopamine-isothiocyanate onto the nanocrystal. Using this sample configuration, we probed the effects of changing the density of dopamine and the buffer pH on the fluorescence properties of these conjugates. Using steady-state and time-resolved fluorescence, we measured a pronounced pH-dependent photoluminescence (PL) quenching for all QD-dopamine assemblies. Several parameters affect the PL loss. First, the quenching efficiency strongly depends on the number of dopamines per QD-conjugate. Second, the quenching efficiency is substantially increased in alkaline buffers. Third, this pH-dependent PL loss can be completely eliminated when oxygen-depleted buffers are used, indicating that oxygen plays a crucial role in the redox activity of dopamine. We attribute these findings to charge transfer interactions between QDs and mainly two forms of dopamine: the reduced catechol and oxidized quinone. As the pH of the dispersions is changed from acidic to basic, oxygen-catalyzed transformation progressively reduces the dopamine potential for oxidation and shifts the equilibrium toward increased concentration of quinones. Thus, in a conjugate, a QD can simultaneously interact with quinones (electron acceptors) and catechols (electron donors), producing pH-dependent PL quenching combined with shortening of the exciton lifetime. This also alters the recombination kinetics of the electron and hole of photoexcited QDs. Transient absorption measurements that probed intraband transitions supported those findings where a simultaneous pronounced change in the electron and hole relaxation rates was measured when the pH was changed from acidic to alkaline.  相似文献   

11.
A method for the determination of intravenous hypnotics in blood by monitoring of its concentration in exhaled air under clinical conditions is described. The results of propofol quantification in exhaled air are compared with those in blood collected by means of mass spectrometry. The possibility of the on-line noninvasive control of propofol in blood in the course of complex anesthesia using a mass spectrometer with electron ionization is demonstrated.  相似文献   

12.
13.
An approach enabling the acquisition of 2D nuclear magnetic resonance (NMR) spectra within a single scan has been recently proposed. A promising application opened up by this "ultrafast" data acquisition format concerns the monitoring of chemical transformations as they happen, in real time. The present paper illustrates some of this potential with two examples: (i) following an H/D exchange process that occurs upon dissolving a protonated protein in D2O, and (ii) real-time in situ tracking of a transient Meisenheimer complex that forms upon rapidly mixing two organic reactants inside the NMR observation tube. The first of these measurements involved acquiring a train of 2D 1H-15N HSQC NMR spectra separated by ca. 4 s; following an initial dead time, this allowed us to monitor the kinetics of hydrogen exchange in ubiquitin at a site-resolved level. The second approach enabled us to observe, within ca. 2 s after the triggering of the reaction, a competition between thermodynamic and kinetic controls via changes in a series of 2D TOCSY patterns. The real-time dynamic experiments hereby introduced thus add to an increasing family of fast characterization techniques based on 2D NMR; their potential and limitations are briefly discussed.  相似文献   

14.
The real-time monitoring of metathesis reactions using a recently developed fiber optic transmission FTIR technique is reported in this paper. The ring-opening metathesis polymerization (ROMP) of 1,5-cyclooctadiene, the ring-closing metathesis (RCM) of 1,7-octadiene and the polymerization of phenylacetylene were investigated. The Schrock carbyne complex, Cl3(dme)WCCMe3, was used as the catalyst for these reactions. The phenylacetylene polymerization was also studied with WCl6 as the catalyst. In the ROMP of 1,5-cyclooctadiene, monomer consumption was followed by monitoring the disappearance of the 1486 cm−1 absorbance, characteristic of the CH2 deformation vibration (δs CH2) in the monomer. In the RCM of 1,7-octadiene, conversion data was obtained by monitoring the 1832 cm−1 signal, which is an overtone of the wagging absorbance at 910 cm−1 of the CH2 end group in the monomer. Phenylacetylene polymerization was monitored by the disappearance of the ν -CCH stretch signal at 2110 cm−1. Polymerization was much faster with the Schrock catalyst than with WCl6, but similar conversions were reached in both reactions. Conversion data obtained by the IR technique agreed well with gravimetric product yields.  相似文献   

15.
16.
The spatial and temporal control of biological species is essential in complex microfluidic biosystems. In addition, if the biological species is a cell, microfluidic handling must ensure that the cell's metabolic viability is maintained. The use of DEP for cell manipulation in microfluidics has many advantages because it is remote and fast, and the voltages required for cell trapping scale well with miniaturization. In this paper, the conditions for bacterial cell (Escherichia coli) trapping using a quadrupole electrode configuration in a PDMS microfluidic channel were developed both for stagnant and for in‐flow fluidic situations. The effect of the electrical conductivity of the fluid, the applied electric field and frequency, and the fluid‐flow velocity were studied. A dynamic exchange between captured and free‐flowing cells during DEP trapping was demonstrated. The metabolic activity of trapped cells was confirmed by using E. coli cells genetically engineered to express green fluorescent protein under the control of an inducible promoter. Noninduced cells trapped by negative DEP and positive DEP were able to express green fluorescent protein minutes after the inducer was inserted in the microchannel system immediately after DEP trapping. Longer times of trapping prior to exposure to the inducer indicated first a degradation of the cell metabolic activity and finally cell death.  相似文献   

17.
Bacterial RecA promotes the development and transmission of antibiotic resistance genes by self-assembling into an ATP-hydrolyzing filamentous homopolymer on single-stranded DNA. We report the design of a 29mer peptide based on the RecA N-terminal domain involved in intermonomer contact that inhibits RecA filament assembly with an IC50 of 3 microM.  相似文献   

18.
In this work, the potential of PDMS-based microchip electrophoresis in the identifications and characterizations of microorganism was evaluated. Enteropathogenic E. coli (EPEC) was selected as the model microorganism. In this study, separation parameters such as applied voltage, concentrations of buffer and buffer modifier, injection voltage, and duration of injection had been investigated and optimized. Determination of EPEC bacteria could be completed within 2 min with good reproducibility. RSDs were less than 0.5 and 5% in migration time and peak area, respectively. Separation efficiency corresponding to plate number of more than 100,000 was achieved. In order to obtain reproducible separations, sample pretreatment was found to be essential. Microchip electrophoresis with LIF detection could potentially revolutionize certain aspects of microbiology involving diagnosis, profiling of pathogens, environmental analysis, and many other areas of study.  相似文献   

19.
Whole cell bacteria have been entrapped within sol-gel silica matrices in order to perform bio-catalytic experiments. Escherichia coli have been chosen as a model for sol-gel encapsulation. Transmission electron microscopy shows that bacteria are randomly dispersed within the silica matrix and that their cellular organization is preserved. The -galactosidase activity of entrapped E. coli was studied using p-NPG as a substrate. The formation of p-nitrophenol was followed by optical absorption. These experiments show that E. coli still exhibit noticeable enzymatic activity after encapsulation in wet gels. They follow the well known Michaelis-Menten kinetic law but their activity decreases in dried xerogels.  相似文献   

20.
The synthesis of natural products by E. coli is a challenging alternative method of environmentally friendly minimization of hazardous waste. Here, we establish a recombinant E. coli capable of transforming sodium benzoate into 2,4,6-trihydroxybenzophenone (2,4,6-TriHB), the intermediate of benzophenones and xanthones derivatives, based on the coexpression of benzoate-CoA ligase from Rhodopseudomonas palustris (BadA) and benzophenone synthase from Garcinia mangostana (GmBPS). It was found that the engineered E. coli accepted benzoate as the leading substrate for the formation of benzoyl CoA by the function of BadA and subsequently condensed, with the endogenous malonyl CoA by the catalytic function of BPS, into 2,4,6-TriHB. This metabolite was excreted into the culture medium and was detected by the high-resolution LC-ESI-QTOF-MS/MS. The structure was elucidated by in silico tools: Sirius 4.5 combined with CSI FingerID web service. The results suggested the potential of the new artificial pathway in E. coli to successfully catalyze the transformation of sodium benzoate into 2,4,6-TriHB. This system will lead to further syntheses of other benzophenone derivatives via the addition of various genes to catalyze for functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号