首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a facile method to grow multi-sectional TiO2 nanotube arrays consisting of alternating bamboo-shaped and smooth-walled nanotube sections by anodization. Two key factors are necessary for obtaining these morphologies. First, in order to avoid possible disruptions between the conjoint sections of the nanotube, the distribution of hydrogen ions is suggested not to be fiercely disturbed when switching from the first to the second stage. Second, to avoid the disruption of the nanotube at the joint which results from the disparity in diameters between sections, the direct current voltage is set to be the maximum of the square wave voltage. These newly developed TiO2 nanotube arrays are expected to have potential applications in solar cells, drug release and delivery systems.  相似文献   

2.
This paper describes TiO2 nanotube arrays prepared by anodic oxidation of Ti substrates using pulse voltage waveforms. Voltages were pulsed between 20 and -4 V or between 20 and 0 V with varying durations from 2 to 16 s at the lower limit of the pulse waveform. Ammonium fluoride or sodium fluoride (and mixtures of both) was used as the electrolyte with or without added medium modifier (glycerol, ethylene glycol, or poly (ethylene glycol) (PEG 400)) in these experiments. The pulse waveform was optimized to electrochemically grow TiO2 nanotubes and chemically etch their walls during its cathodic current flow regime. The resultant TiO2 nanotube arrays showed a higher quality of nanotube array morphology and photoresponse than samples grown via the conventional continuous anodization method. Films grown with a 20 V/-4 V pulse sequence and pulse duration of 2 s at its negative voltage limit afforded a superior photoresponse compared to other pulse durations. Specifically, the negative voltage limit of the pulse (-4 V) and its duration promote the adsorption of NH4+ species that in turn inhibits chemical attack of the growing oxide nanoarchitecture by the electrolyte F- species. The longer the period of the pulse at the negative voltage limit, the thicker the nanotube walls and the shorter the nanotube length. At variance, with 0 V as the low voltage limit, the longer the pulse duration, the thinner the oxide nanotube wall, suggesting that chemical attack by fluoride ions is not counterbalanced by NH3/NH4+ species adsorption, unlike the interfacial situation prevailing at -4 V. Finally, the results from this study provide useful evidence in support of existing mechanistic models for anodic growth and self-assembly of oxide nanotube arrays on the parent metal surface.  相似文献   

3.
Titania nanotube arrays were fabricated by anodic oxidation of titanium foil in different electrolytes. The morphology, crystallinity and composition of the as-prepared nanotube arrays were studied by XRD, SEM and EDX. Electrochemical impedance spectroscopy (EIS) was employed to investigate their electrical conductivity and capacitance. Titania nanotube arrays co-adsorbed with horseradish peroxidase (HRP) and thionine chloride (Th) were studied for their sensitivity to hydrogen peroxide by means of cyclic voltammetric and galvanostatic measurements. The experiments showed that TiO2 nanotube arrays possessed appreciably different sensitivities to H2O2 due to their different conductivity. Further experiments revealed that TiO2 nanotubes have noticeably different ability of adsorbing HRP and Th, and the best sensitivity was achieved when the density of HRP is the highest. The TiO2 nanotube arrays fabricated in potassium fluoride solution demonstrated the best sensitivity on hydrogen peroxide in the range of 10−5–3 × 10−3 M at pH 6.7 and at a potential of −600 mV (vs. Ag/AgCl).  相似文献   

4.
We report a facile method to grow multi-sectional TiO2 nanotube arrays consisting of alternating bamboo-shaped and smooth-walled nanotube sections by anodization.Two key factors are necessary for obtaining these morphologies.First,in order to avoid possible disruptions between the conjoint sections of the nanotube,the distribution of hydrogen ions is suggested not to be fiercely disturbed when switching from the first to the second stage.Second,to avoid the disruption of the nanotube at the joint which resu...  相似文献   

5.
We report here on a study of vertically aligned TiO(2) nanotube arrays grown by the one-step anodic oxidation technique and their photocatalytic performance for methane decomposition. Quantitative activity data as a function of film thickness is obtained.  相似文献   

6.
The tubular-shaped nanostructure of TiO(2) is very interesting, and highly ordered arrays of TiO(2) nanotubes (TNTs) can be easily fabricated by anodization of the Ti substrate in specific electrolytes. Here in this feature article, we review synthesis methods for various TNTs including normal, alloy, and architectural forms such as bamboos, lace, and flowers. Specific nanosize architectures such as bamboo and lace types can be regulated by alternating voltage and further anodizing. In order to extend light response of TNTs to visible solar spectra, various dopings of specific elements have been discussed. The normal and modified TNTs are suggested for applications such as dye sensitized solar cells, water splitting, photocatalytic degradation of pollutants, CO(2) reduction, sensors, energy storage devices including Li ion batteries and supercapacitors, and other applications such as flexible substrate and biomaterials.  相似文献   

7.
Highly ordered TiO2 nanotube arrays were fabricated on a conducting glass substrate in NH4HF2/glycol electrolyte via anodization of titanium film which was deposited by direct current magnetron sputtering (DCMS) at different temperatures. The results showed that Ti films with good homogeneity and high denseness could be formed under the conditions Ar pressure 0.35 Pa, direct current 3.5 A, and 2 h at 300 °C. Characterization of the TiO2 nanotube arrays was investigated comparatively, by altering anodization time. The surface morphology of the samples changed as the anodization time was prolonged from 10 to 150 min at 30 V. The TiO2 thin film was amorphous and could be transformed into anatase by annealing at 450 °C. On the basis of UV?Cvisible transmission spectra the bandgap of the thin film was calculated to be 3.12 eV, and its tail extended to 2.6 eV.  相似文献   

8.
A galvanostatic anodization is used to prepare long TiO2 nanotube arrays (TNTAs). TNTAs of over 100 μm in length, with similar nanotube size and structural regularity to the classic TNTAs made from potentiostatic mode, are achieved at 10 mA cm 2. After a post-anodization in a H3PO4-based electrolyte, the TNTAs with long nanotubes exhibit good adhesion to Ti substrate. The as-prepared long TNTAs yield a larger areal capacitance of 128.4 mF cm 2. Further, the long TNTAs possess a higher surface area, making them suitable as support templates for other active materials.  相似文献   

9.
Cu(OH)2 nanoneedle and nanotube arrays were electrochemically synthesized by anodization of a copper foil in an aqueous solution of KOH. The nanoneedles and nanotubes were constructed from nanosheets of Cu(OH)2. Controlling the electrochemical conditions can qualitatively modulate the lengths, amounts, and shapes of Cu(OH)2 nanostructures. The composition of as-prepared Cu(OH)2 nanostructures has been confirmed by X-ray diffraction and select-area electron diffraction. The influences of the KOH concentration of the aqueous electrolyte, the reaction temperature, and current density on the morphology of Cu(OH)2 nanostructures were investigated, and the formation mechanism of the nanostructures is discussed. Furthermore, Cu(OH)2 nanoneedles can be successfully transformed to CuO nanoneedles with little morphology change by heating. This work developed a simple, clean, and effective route for fabrication of large area Cu(OH)2 or CuO nanostructured films.  相似文献   

10.
TiO2 array film fabricated by potentiostatic anodization of titanium is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge–discharge measurements. The XRD results indicated that the TiO2 array is amorphous, and after calcination at 500 °C, it has the anatase form. The pore size and wall thickness of TiO2 nanotube arrays synthesized at different anodization voltages are highly dependent on the applied voltage. The electrochemical performance of the prepared TiO2 nanotube array as an electrode material for lithium batteries was evaluated by galvanostatic charge–discharge measurement. The sample prepared at 20 V shows good cyclability but low discharge capacity of 180 mA h cm−3, while the sample prepared at 80 V has the highest discharge capacity of 340 mA h cm−3.  相似文献   

11.
The adsorption and photoelectrocatalytic characteristics of four different kinds of organic compounds (d-fructose, glutamic acid, fumaric acid, and nicotinic acid) on TiO2 nanotube arrays (TNAs) were investigated using a thin-layer cell, wherein the compounds were rapidly and exhaustively oxidized. The photogenerated current–time (I pht) profiles were found to be related to the adsorption, the degradation rate, and the reaction mechanism. The relationship between the initial organic compounds concentrations and photocurrent peaks (I 0ph) fit the Langmuir type adsorption model well, thereby confirming that the adsorption of organic compounds on TNAs was via monolayer adsorption. The adsorption equilibrium constant was obtained from the Langmuir equation. The results indicate that the adsorption performance of the organic compounds on TNAs were in the following order: nicotinic acid < d-fructose < glutamic acid < fumaric acid. The degradation of organic compounds on TNAs was classified as either easy or difficult based on the time of complete mineralization (t end) of the organic samples under an equal holes consumption; the degree of degradation were as follows: fumaric acid < d-fructose < glutamic acid < nicotinic acid. The photoelectrocatalytic characteristics of the organic compounds on TNAs were also discussed by analyzing the changes in the I ph t profiles.  相似文献   

12.
A GOx/Ag/TiO2 glucose biosensor was achieved by photoreducing Ag nanoparticles on TiO2 nanotube arrays (NTAs) following with adsorption of GOx. The morphology, structure, and element component of Ag/TiO2 NTAs were characterized by scanning electron microscope, transmission electron microscope, and X-ray diffraction. Ag nanoparticles were uniformly deposited on surface of TiO2 NTAs with average size of 15 nm and the size and distribution changed with the immersing time of TiO2 NTAs in AgNO3 aqueous solution. Electrochemical properties of Ag/TiO2 NTAs were characterized by cyclic voltammetry and amperometric detection of H2O2, revealing that TiO2 NTAs with immersing time of 30 min achieve the best electrochemical activity. The GOx/Ag/TiO2 NTAs biosensor with optimum conditions achieves a sensitivity of 0.39μA mM?1 cm?2 with liner range from 0.1 to 4 mM.  相似文献   

13.
Photocatalytic splitting water into hydrogen and oxygen by utilizing solar energy is regarded as an effective strategy to solve oil crisis. By utilizing density functional calculations, we herein present the systemic studies with respect to water splitting mechanism on N‐doped TiO2 nanotube arrays (NTAs), and focus on activation energy, thermodynamic properties, and effects of N‐doping on reaction process. Our results reveal that the impurity 2p states of doped nitrogen effectively change electronic structure of TiO2 NTAs, which act as an electron acceptor and facilitate weakly bound electrons of valence band to be easily excited to acceptor level, as well as enhance the first H2O adsorption and dissociation on the inside wall of N‐doped TiO2 NTAs. Therefore, it is found that the rate‐determining step of water splitting is the formation reaction of HOO* on N‐doped TiO2 NTAs rather than the formation of HO* from the first H2O. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
15.
A new concept for formation of nanostructured intrinsically conducting polymers (ICP) is demonstrated. Polypyrrole can be electropolymerized from an ionic-surfactant-solution in TiO(2) nanotube framework to form a geometrical structure of self-organized nanopore arrays. Polymerization is initialized selectively in the space between nanotube walls forming a mechanically stable polymer network with controlled wall thickness from 40 to 10 nm. Such robust polymer nanostructures are very promising for application in electrochemical systems of limited charge carrier diffusion length.  相似文献   

16.
The photocatalytic conversion of CO2 and H2O to alcohols was achieved using self-organized TiO2 nanotube arrays (TNAs), which were prepared by electrochemical anodization of Ti foils in 1 M (NH4)2SO4 electrolyte containing 0.5 wt% NH4F. Experimental results revealed that the morphology and structure of self-organized TNAs could be strongly influenced by the applied voltage and anodization temperature, and the optimized TNAs were prepared by electrochemical anodization of Ti foils under optimal conditions (i.e., at 20 V for 2 h at 30 °C). The as-prepared TNAs were amorphous and could be transformed to anatase phase during the thermal treatment at 450 °C in air for 3 h. By using the annealed TNAs as a photocatalyst, the photocatalytic reduction of CO2 to alcohol, predominately methanol and ethanol, was demonstrated under Xenon lamp illumination. Based on the photocatalytic measurements, the production rates of methanol and ethanol were calculated to be ~10 and ~9 nmol cm?2 h?1, respectively. In addition, the formation mechanism of methanol and ethanol was also tentatively proposed.  相似文献   

17.
The paper describes the electronic charging and conducting properties of vertically oriented TiO 2 nanotube arrays formed by anodization of Ti foil samples. The resulting films, composed of vertically oriented nanotubes approximately 10 mum long, wall thickness 22 nm, and pore diameter 56 nm, are analyzed using impedance spectroscopy and cyclic voltammetry. Depending on the electrochemical conditions two rather different electronic behaviors are observed. Nanotube array samples in basic medium show behavior analogous to that of nanoparticulate TiO 2 films used in dye-sensitized solar cells: a chemical capacitance and electronic conductivity that increase exponentially with bias potential indicating a displacement of the Fermi level. Nanotube array samples in acidic medium, or samples in a basic medium submitted to a strong negative bias, exhibit a large increase in capacitance and conductivity indicating Fermi level pinning. The contrasting behaviors are ascribed to proton intercalation of the TiO 2. Our results suggest a route for controlling the electronic properties of the ordered metal-oxide nanostructures for their use in applications including supercapacitors, dye-sensitized solar cells, and gas sensing.  相似文献   

18.
A double-sided, transparent conducting and flexible dye-sensitized solar cell (DSSC) was developed. The device comprised two metal electrodes whereby the working electrode consisted of highly ordered titania (TiO2) nanotube arrays. The maximum conversion efficiency of the DSSC was 5.1% and decreased by 6% under a 90° bending. Surface treatment of the TiO2 nanotube arrays in niobium isopropoxide solution lifted the conversion efficiency to 6.8%.  相似文献   

19.
Herein we report the direct fabrication of TiO(2) subwavelength structures with 1-dimensional TiO(2) nanorods on glass substrate through solvothermal process to form self-cleaning antireflection coatings. TiO(2) precursor solutions with different solvent constituents create TiO(2) nanorods with much different morphologies grown on glass substrates. Apiculate TiO(2) nanorods with vertical orientation are grown on the glass substrate which is solvothermally treated in the precursor solution containing ethylene glycol. This glass substrate exhibit the highest transmittance of 70-85% in the range of 520-800 nm and negligible absorption in visible light region (400-800 nm). Furthermore, the TiO(2) nanorod arrays show high hydrophobicity and photocatalytic degradation ability which offer the glass substrate self-cleaning properties for both hydrophilic and oily contaminants.  相似文献   

20.
Anodization of titanium in a fluorinated dimethyl sulfoxide (DMSO) and ethanol mixture electrolyte is investigated. The prepared anodic film has a highly ordered nanotube-array surface architecture. Using a 20 V anodization potential (vs Pt) nanotube arrays having an inner diameter of 60 nm and 40 nm wall thickness are formed. The overall length of the nanotube arrays is controlled by the duration of the anodization, with nanotubes appearing only after approximately 48 h; a 72 h anodization results in a nanotube array approximately 2.3 mum in length. The photoelectrochemical response of the nanotube-array photoelectrodes is studied using a 1 M KOH solution under both UV and visible (AM 1.5) illumination. Enhanced photocurrent density is observed for samples obtained in the organic electrolyte, with an UV photoconversion efficiency of 10.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号