首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome c (Cyt c) was successfully immobilized on L-cysteine modified gold electrode by multicyclic voltammetry method. The electrochemical behavior of Cyt c on the L-cysteine modified electrode was explored. In 0.10 M, pH 7.0 phosphate buffer solution (PBS), Cyt c showed a quasi-reversible electrochemical redox behavior with E(pc)=0.180 V, E(pa)=0.208 V (versus Ag/AgCl). The Cyt c/L-cysteine modified electrode gave an excellent electrocatalytic activity towards the oxidation of nitric oxide, and the catalysis currents were proportional to the nitric oxide concentration in the range of 7.0 x 10(-7) to 1.0 x 10(-5) M, the linear regression equation is I (microA)=-0.124-0.003 C(NO) (microM), with a correlation coefficient 0.996, The detection limit was 3.0 x 10(-7) M (times the ratio of signal to noise, S/N=3).  相似文献   

2.
In the present work, nanocomposite of polymerized ionic liquid (PIL), poly (1-vinyl-3-ethyl imidazolium) bromide, modified graphene nanosheet (PIL-Gr) was prepared. The PIL-Gr nanosheet composite was evaluated using scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Then, a robust and effective sensing strategy based on the nanocomposite for cytochrome c (Cyt c) immobilization on basal plane graphite (BPG) electrode surface was proposed. Direct electrochemistry and electrocatalysis of immobilized Cyt c were investigated in detail. The cyclic voltammogram results indicated that the PIL-Gr nanocomposite film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of nitric oxide (NO). The fabricated biosensor exhibited a fast response and a good electrochemical activity for NO with comparable liner range and low detection limit. The low apparent Michaelis–Menten constant $ (K_{\text{m}}^{\text{app}}) $ indicated the affinity of PIL-Gr and Cyt c. Moreover, the modified electrode displayed a rapid response to NO and possessed good stability and reproducibility. Based on the nanocomposite, a third-generation reagentless biosensor could be constructed for the determination of NO. The present work broadens the applications of graphene and ionic liquid in biosensor field.  相似文献   

3.
Cytochrome c′ from Chromatium vinosum (CVCP) was immobilized at a surface-modified gold electrode. Characterization of the CVCP electrode showed a quasi-reversible, diffusionless electrochemical redox behavior of the surface adsorbed protein with a formal potential of −128±5 mV vs. Ag/AgCl. The heterogeneous electron transfer rate constant of adsorbed CVCP was determined to be about 50 s−1. Different immobilization strategies were compared. The interaction of the immobilized CVCP with nitric oxide (NO) was investigated and applied for a primary amperometric detection of NO in solution.  相似文献   

4.
先以氧化石墨烯(Graphen oxide,GO)为阴离子掺杂剂,采用电化学聚合法制备了聚吡咯-氧化石墨烯复合膜(PPy-GO)。分别在0.10 mol/L Na Cl和0.10 mol/L NaOH溶液中对其进行还原和过氧化处理,制得过氧化聚吡咯-还原氧化石墨烯复合膜(OPPy-ERGO)。再以此OPPy-ERGO复合膜为载体,采用电化学沉积法制备了氧化铜-过氧化聚吡咯-还原氧化石墨烯复合膜修饰电极(CuO-OPPy-ERGO/CCE)。通过扫描电镜和电化学方法对此电极进行表征,研究了葡萄糖在此修饰电极上的电化学行为。结果表明,此电极对葡萄糖的电氧化过程表现出高的催化活性和良好的抗干扰能力。在0.20 mol/L NaOH溶液中,安培法检测葡萄糖的线性范围为5.0×10~(-7)~1.0×10~(-3)mol/L,检出限(3Sb)为2.0×10~(-7)mol/L,灵敏度为121.8μA/(mmol·L~(-1))。该电极用于血清中葡萄糖含量的测定,加标回收率为96.0%~110.1%。  相似文献   

5.
《Electroanalysis》2017,29(4):1022-1030
The proposed chemically modified electrode was graphene oxide that was synthesized via Hummer's method followed by reduction of antimony film by in‐situ electrodeposition. The experimental process could be concluded in three main steps: preparation of antimony film, reduction of analyte ions on the electrode surface and stripping step under the conditions of square wave anodic stripping voltammetry (SWASV). A simple and rapid approach was developed for the determination of heavy metals simultaneously based on a sequential injection (SI), an automated flow‐based system, coupled with voltammetric method using antimony‐graphene oxide modified screen‐printed carbon electrode (SbF‐GO‐SPCE). The effects of main parameters involved with graphene oxide, antimony and measurement parameters were also investigated. Using SI‐SWASV under the optimal conditions, the proposed electrode platform has exhibited linear range from 0.1 to 1.5 M. Calculated limits of detection were 0.054, 0.026, 0.060, and 0.066 μM for Cd(II), Pb(II), Cu(II) and Hg(II), respectively. In addition, the optimized method has been successfully applied to determine heavy metals in real water samples with acceptable accuracy of 94.29 – 113.42 % recovery.  相似文献   

6.
The influence of graphene oxide geometry on electrochemical performance is of great interest, but there are few reports on this subject. Three different members of the graphene oxide family, graphene oxide nanosheets, graphene oxide nanoribbons, and graphene oxide quantum dots were comparatively investigated as electrode materials to systematically study the effect of geometric structure. The results showed that, as the geometric structure varies, the three graphene oxide materials possess different electrical conductivities, various defect densities and oxygen contents, as well as diverse electrode surface chemistry and microstructures, which combine together to result in the distinct electrochemical responses for the modified electrodes, depending on the redox system involved. This work broadens the method of studying the electrochemical performance of many other materials from the perspective of geometry.  相似文献   

7.
对氧化石墨烯纳米材料进行HNO3氧化处理, 制备了水溶性好且具有强电化学发光(ECL)活性的大尺寸石墨烯量子点组装体(Large-sized graphene quantum dot assemblies, LSGQD-NAs). 利用透射电子显微镜(TEM)、 原子力显微镜(AFM)、 傅里叶变换红外光谱(FTIR)和拉曼光谱(Raman)等方法对其进行了表征, 结果表明, 石墨烯量子点组装体的平均高度为20 nm, 且富含大量的羟基和羧基. 电化学测试结果显示, 在共反应物K2S2O8存在下, LSGQD-NAs在阴极产生很强的ECL(峰值约在685 nm); 并推测了其ECL反应机理, 发现LSGQD-NAs容易通过中心未氧化的石墨烯π-π作用于GC电极表面进行组装修饰. 本研究为基于石墨烯量子点ECL传感器的研究提供了新方法.  相似文献   

8.
Graphene modified electrodes have been fabricated by electrodeposition from an aqueous graphene oxide solution onto conducting Pt, Au, glassy carbon, and indium tin dioxide substrates. Detailed investigations of the electrochemistry of the [Ru(NH(3))(6)](3+/2+) and [Fe(CN)(6)](3-/4-) and hydroquinone and uric acid oxidation processes have been undertaken at glassy carbon and graphene modified glassy carbon electrodes using transient cyclic voltammetry at a stationary electrode and near steady-state voltammetry at a rotating disk electrode. Comparisons of the data with simulation suggest that the transient voltammetric characteristics at graphene modified electrodes contain a significant contribution from thin layer and surface confined processes. Consequently, interpretations based solely on mass transport by semi-infinite linear diffusion may result in incorrect conclusions on the activity of the graphene modified electrode. In contrast, steady-state voltammetry at a rotating disk electrode affords a much simpler method for the evaluation of the performance of graphene modified electrode since the relative importance of the thin layer and surface confined processes are substantially diminished and mass transport is dominated by convection. Application of the rotated electrode approach with carbon nanotube modified electrodes also should lead to simplification of data analysis in this environment.  相似文献   

9.
The glassy carbon (GC) electrode modified with Nafion and Safranin O (SFO) was prepared and its electrochemical properties were investigated. The SFO molecules were strongly and irreversibly adsorbed on the Nafion — modified GC surface. The electrochemical behavior and mechanism for interactions of the SFO molecules with the Nafion film were investigated through cyclic voltammetric method. The electrocatalytic reduction of nitric oxide was performed at this modified electrode by cyclic voltammetric and hydrodynamic amperometric techniques. The Nafion membrane played a duel role as a matrix for the SFO immobilization and also helped to partition the nitric oxide from the solution phase. The diffusion coefficient of NO at the SFO/Nafion/GC modified electrode was calculated using chronoamperometry. The dependence of response currents on the concentration of NO was examined and was linear in the range of 0.05–1.9 mM of NO.  相似文献   

10.
A graphene‐based electrochemical sensing platform for sensitive determination of explosive nitroaromatic compounds (NACs) was constructed by means of electrochemical reduction of graphene oxide (GO) on a glassy carbon electrode (GCE). The electrochemically reduced graphene (ER‐GO) adhered strongly onto the GCE surface with a wrinkled morphology that showed a large active surface area. 2,4‐Dinitrotoluene (2,4‐DNT), as a model analyte, was detected by using stripping voltammetry, which gave a low detection limit of 42 nmol L−1 (signal‐to‐noise ratio=3) and a wide linear range from 5.49×10−7 to 1.1×10−5 M . Further characterizations by electrochemistry, IR, and Raman spectra confirmed that the greatly improved electrochemical reduction signal of DNT on the ER‐GO‐modified GC electrode could be ascribed to the excellent electrocatalytic activity and high surface‐area‐to‐volume ratio of graphene, and the strong π–π stacking interactions between 2,4‐DNT and the graphene surface. Other explosive nitroaromatic compounds including 1,3‐dinitrobenzene (1,3‐DNB), 2,4,6‐trinitrotoluene (TNT), and 1,3,5‐trinitrobenzene (TNB) could also be detected on the ER‐GO‐modified GC electrode at the nM level. Experimental results showed that electrochemical reduction of GO on the GC electrode was a fast, simple, and controllable method for the construction of a graphene‐modified electrode for sensing NACs and other sensing applications.  相似文献   

11.
Microchimica Acta - Myoglobin-modified gold nanorods incorporating reduced graphene oxide (rGO) were fabricated and deposited on a glassy carbon electrode (GCE) to obtain a sensor for nitric oxide...  相似文献   

12.
Cytochrome c has been immobilized onto functionalized, optically transparent indium tin oxide (ITO) electrodes by covalent and electrostatic techniques. Covalent immobilization was achieved by the formation of a disulfide bond between N-succinimidyl 3-(2-pyridyldithio)propionate-(SPDP-) modified cytochrome c and SPDP-silanized ITO. Additionally, ITO electrodes have been modified with the bifunctional reagent 1,12-dodecanedicarboxylic acid (DDCA), resulting in formation of a carboxylic acid-terminated monolayer. Covalent protein attachment to the DDCA-functionalized ITO was achieved with the cross-linker 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride. Electrostatic attachment of the protein involved ion-pair and hydrogen-bond interactions between the terminating carboxylic acid groups of the DDCA-functionalized ITO and the primary amine groups of the lysine residues of cytochrome c. The electrostatic interaction between the cytochrome c and the functionalized ITO resulted in greater rotational mobility of the protein at the electrode surface, leading to ca. 63% electroactivity, as compared to ca. 41% electroactivity for the covalently immobilized protein. The redox state of the electrostatically bound cytochrome c monolayers could be electrochemically switched between ferric and ferrous forms. Electrochemical control of the bound protein was used to regenerate the biosensing surface following binding of nitric oxide (NO). Ligation of NO with the cytochrome c was monitored by measurement of the change of absorbance intensity at 416 nm. Through application of a negative potential, the cytochrome c was reduced from the ferric to the ferrous form, which led to the removal of the ligated NO. Application of a positive potential regenerated the ferric cytochrome c, enabling multiple repeat measurements of NO. Such electrochemical control of proteins immobilized on transparent electrodes enables the optical biosensing of analyte targets without recourse to exogenous reagents.  相似文献   

13.
A sensitive electrochemical aptasensor was developed with conductive graphene served as platform and inert graphene oxide (GO) as enhancer. An electrodeposited nano-Au layer was firstly formed on conductive graphene modified glass carbon electrode surface for further immobilizing of electrochemical redox probe hexacyanoferrates nanoparticles (NiHCFNPs). Subsequently, another nano-Au layer was formed for immobilizing of thrombin aptamer (TBA). In the presence of thrombin, the TBA on the electrode surface could bind with thrombin, which made a barrier for electrons and inhibited the electro-transfer, resulting in the decreased electrochemical signals of NiHCFNPs. Owing to the non-conductivity property of graphene oxide, further decreased electrochemical signals of NiHCFNPs could be obtained via the sandwich reaction with GO-labeled TBA. According to the signal changes before the thrombin recognition and after sandwich reaction, trace detection of thrombin could be achieved. As a result, the proposed approach showed a high sensitivity and a wider linearity to thrombin in the range from 0.005 nM to 50 nM with a detection limit of 1 pM.  相似文献   

14.
《中国化学》2018,36(1):37-41
A novel Pt/Cu‐zeolite A/graphene based electrocatalyst was successfully prepared by chemical reduction method for methanol electrooxidation. Graphite oxide and Cu functionalized zeolite A were simultaneously reduced by NaBH4 to prepare Cu‐zeolite A/graphene support which was used to deposit Pt nanoparticles. The nanostructure and composition of as‐prepared Pt/Cu‐zeolite A/graphene composites were characterized by X‐ray diffractometer, X‐ray fluorescence, Fourier transform infrared spectrometer and scanning electron microscopy. The electrocatalytic properties of Pt/Cu‐zeolite A/graphene modified electrode for methanol oxidation were investigated by cyclic voltammetry and chronoamperometry in 0.10 mol/L H2SO4 + 0.50 mol/L CH3OH solution. Compared with Pt/zeolite A/graphene electrode and Pt/graphene electrode, Pt/Cu‐zeolite A/graphene based electrode exhibited obviously enhanced current and higher electrocatalytic activity for methanol electrooxidation. The increased electrocatalytic activity was attributed to the presence of zeolite A and reduced graphene oxide based dual template, which significantly increased the effective electrode surface and facilitated the diffusion of analytes into the electroactive catalyst.  相似文献   

15.
《Electroanalysis》2017,29(6):1543-1553
A graphene‐functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4‐carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer‐modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4‐carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye‐labeled insulin (insulin‐FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9–10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of −1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin‐FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC‐labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene‐functionalized carbon fiber electrode demonstrated significant advantages in the signal‐stimulated insulin release comparing with the carbon fiber electrode without the graphene species.  相似文献   

16.
We describe a simple, green and controllable approach for electrochemical synthesis of a nanocomposite made up from electrochemically reduced graphene oxide (ERGO) and gold nanoparticles. This material possesses the specific features of both gold nanoparticles and graphene. Its morphology was characterized by scanning electron microscopy which reveals a homogeneous distribution of gold nanoparticles on the graphene sheets. Cyclic voltammetry was used to evaluate the electrochemical properties of this nanocomposite towards dopamine by modification of it on surface of glassy carbon electrode (GCE). Compared to the bare GCE, the electrode modified with gold nanoparticles, and the electrode modified with ERGO, the one modified with the nanocomposite displays better electrocatalytic activity. Its oxidation peak current is linearly proportional to the concentration of dopamine (DA) in the range from 0.1 to 10?μM, with a detection limit of 0.04?μM (at S/N?=?3). The modified electrode also displays good storage stability, reproducibility, and selectivity.
Figure
Electrochemical reduced graphene oxide (ERGO) before and after electrochemical deposition of Au nanoparticles. Au nanoparticles with diameters of about 40–50?nm integrate uniformly with the ERGO. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear range, excellent selectivity and sensitivity to DA.  相似文献   

17.
《Analytical letters》2012,45(6):923-935
Electrochemically reduced graphene oxide (ER-GO) was prepared by reducing exfoliated graphene oxide sheets on a glassy carbon electrode (GCE). The voltammetric responses of Sudan I-IV were studied at the ER-GO modified GCE (ER-GO/GCE). Compared with chemically reduced graphene oxide (CR-GO) modified electrode (CR-GO/GCE), ER-GO/GCE showed higher voltammetric responses to Sudan I. The electrode had a linear response to Sudan I in the range of 0.04–8.0 µmol L?1 and a detection limit of 0.01 µmol L?1. The real sample determination indicated that the proposed method was reliable, effective, and sufficient.  相似文献   

18.
In this work, a novel Cu?zeolite A/graphene modified glassy carbon electrode was applied for the determination of rutin. The Cu?zeolite A/graphene composites were prepared using copper doped zeolite A and graphene oxide as the precursor, subsequently reduced by chemical agents. Based on the Cu?zeolite A/graphene modified electrode, the overpotential of the rutin oxidation was lowered by ~300 mV. Also the proposed Cu?zeolite A/graphene modified electrode showed higher electrocatalytic performance than zeolite A/graphene electrode or graphene modified electrode. The electrochemical behavior of copper incorporated in the zeolite A modified electrode illustrated the adsorption-controlled reaction at the modified electrode. The behavior of electrocatalytic oxidation of rutin at the modified electrode was investigated. The diffusion coefficient of rutin was equal to 4.2 × 10–7 cm2/s. A linear calibration graph was obtained for rutin over the concentration range of 2.3 × 10–7–2.5 × 10–3 M. The detection limit for rutin was 1.2 × 10–7 M. The RSDs of 10 replicate measurements performed on a single electrode at rutin concentrations between 2.3 × 10–7–2.5 × 10–3 M were between 1.1 and 2.1%. Study of the influence of potentially interfering substances on the peak current of rutin showed that the method was highly selective. The proposed electrode was used for the determination of rutin in real samples with satisfactory results.  相似文献   

19.
《Electroanalysis》2017,29(2):345-351
A glassy carbon electrode modified with reduced graphene oxide and platinum nanocomposite film was developed simply by electrochemical method for the sensitive and selective detection of nitrite in water. The electrochemical reduction of graphene oxide (GO) efficiently eliminates oxygen‐containing functional groups. Pt nanoparticles were electrochemically and homogeneously deposited on the ErGO surface. Field emission scanning electron microscopy (FE‐SEM), Raman spectroscopy, attenuated total reflectance‐fourier transform infrared spectroscopy (ATR‐FTIR), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were used to examine the surface morphology and electrocatalytic properties of the Pt‐ErGO nanocomposite film‐modified electrode surface. The fabricated nitrite sensor showed good electrochemical performance with two linear ranges; one from 5 to 100 µM (R2=0.9995) and the other from 100 to 1000 µM (R2=0.9972) and a detection limit of 0.22 µM. The proposed sensor was successfully applied for the detection of nitrite in tap water samples which proves performance of the Pt‐ErGO nanocomposite films.  相似文献   

20.
This work presents a sensitive voltammetric method for determination of folic acid by adsorbing methylene blue onto electrodeposited reduced graphene oxide film modified glassy carbon electrode (MB/ERGO/GCE) in 100 mM KCl‐10 mM sodium phosphate buffer solution (pH 7.40). The surface morphology of the MB/ERGO/GCE modified electrode was characterized using scanning electron microscopy, displays that both MB and ERGO distributed homogeneously on the surface of GCE. The MB/ERGO/GCE modified electrode shows more favorable electron transfer kinetics for potassium ferricyanide and potassium ferrocyanide probe molecules, which are important electroactive compounds, compared with bare GCE, MB/GCE, and ERGO/GCE. The electrochemical behaviors of folic acid at MB/ERGO/GCE were investigated by cyclic voltammetry, suggesting that the modified electrode exhibited excellent electrocatalytic activity towards folic acid compared with other electrodes. Under physiological condition, the MB/ERGO/GCE modified electrode showed a linear voltammetric response from 4.0 μM to 167 μM for folic acid, and with the detection limit of 0.5 μM (S/N=3). The stability, reproducibility and anti‐interference ability of the modified electrode were examined. The developed method has been successfully applied to determination of FA in tablets with a satisfactory recovery from 96 % to 100 %. The work demonstrated that the electroactive MB adsorbing onto graphene modified electrode showed an enhanced electron transfer property and a high resolution capacity to FA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号