首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenomenon of electrochemical promotion of catalysis (EPOC) is most often fully reversible. Subsequent to long-lasting polarization, however, the new steady-state open-circuit catalytic activity after current interruption may remain significantly higher than that before polarization. This phenomenon has been reported as “permanent electrochemical promotion of catalysis” (P-EPOC). The catalytic oxidation of C2H4 was studied over a Pt/YSZ/Au electrochemical cell under excess O2 at 375 °C, combining cyclic voltammetry and mass spectrometry. It has been found that after positive current interruption, the catalytic rate remains in a highly active P-EPOC steady-state, where it is almost double than the initial open-circuit rate. During this highly active steady-state, the application of a similar negative current for a similar time period has been found to result in the return of the catalytic rate to the initial open-circuit state. Similar reversibility of the rate has been observed after cyclic voltammetry experiments where after a complete potential oscillation the open-circuit rate is almost the same to that before polarization. These establish the reported mechanism for the origin of P-EPOC, on promoting species storage and concomitant migration to the metal/gas interface after positive current interruption, through the three phase boundaries.  相似文献   

2.
The sensing characteristics to propene (C3H6) were examined at 600 °C under wet condition for the amperometric sensor using a yttria-stabilized zirconia (YSZ) tube and ZnO (+8.5 wt%Pt) sensing-electrode (SE). In order to improve the sensitivity to C3H6, the “pulsed-potential method” was adopted here. It was found that the current response varied almost linearly with C3H6 concentration in the range of 0–200 ppm when SE was polarized at +1.0 V (vs. Pt/air reference electrode) for a period of 0.3 s. By using the present “pulsed-potential method”, the sensitivity to 100 ppm C3H6 was increased about 1000 times, compared with the normal “constant-potential method”. The excellent selectivity to C3H6 was also obtained for the present sensor without influence of other hydrocarbons, NOx, CO, H2, etc.  相似文献   

3.
Iron phosphide films (Fe2P) grown in situ on stainless steel mesh (SSM) exhibit excellent electrocatalytic performance toward the glucose oxidation reaction (GOR) with robust durability. During GOR, the Fe2P could be further transformed into the oxidized Fe species with high catalytic activity. The integrated two-electrode glucose electrolytic cell utilizing Fe2P/SSM and Pt/C exhibited a cell voltage 300 mV lower than water splitting alone, indicating an efficient pathway for H2 production. These features suggest that the replacement of the sluggish oxygen evolution reaction (OER) with the thermodynamically more favourable GOR in the Pt/C ||Fe2P/SSM configuration is an attractive alternative for electrolytic H2 generation.  相似文献   

4.
We prepared Pt nanocube catalyst with about 3.6 nm in size by a polyol process in the presence of PVP as a stabilizer and Fe ion as a kinetic controller. The crystal structure of Pt nanocube with {1 0 0} faces was confirmed by field-emission transmission electron microscopy. In a cyclic voltammogram, we found that the Pt nanocube catalyst showed relatively high ratio of the forward anodic peak current to the reverse anodic peak current resulting in less accumulation of residues on the catalyst. The Pt nanocube catalyst with the edge of stepped {1 0 0} faces was preferable to breakage of CH3OH and CH3CH2OH compared to polycrystalline Pt nanocatalyst. In an electrochemical measurement for methanol and ethanol electrooxidation, the Pt nanocube catalyst showed an excellent catalytic activity, i.e., lower onset potential and higher current density, compared to the polycrystalline Pt nanocatalyst.  相似文献   

5.
Electrode–electrolyte hetero-epitaxial systems for solid oxide fuel cells (SOFCs) with two different configuration of Nd2NiO4 + δ(110)//YSZ(100) and Nd2NiO4 + δ(100)//YSZ(110) were successfully fabricated by pulsed laser deposition. Thin films of Nd2NiO4 + δ approximately 20 nm thick were grown on a commercial single crystal of YSZ. The preferred two-dimensional diffusion paths of the oxide ions were perpendicular to the substrate for both configurations and showed oxygen reduction capability different from each other. This opens up new research direction focusing on the details of anisotropic catalytic activity of SOFC cathode depending on the crystalline surface.  相似文献   

6.
The reactions of several α,ω-diynes with half-open titanocene complexes [M(C5H5)(2,4-C7H11)(PR3)] (C7H11 = dimethylpentadienyl) lead to 5 + 2 + 2 ring constructions, yielding nine-membered rings fused to four-membered and larger rings. These reactions tolerate significant functionalization, even allowing for the presence of heteroatoms such as oxygen and nitrogen. The nine-membered rings provide both allyl and diene coordination to the Ti(C5H5) fragments, resulting in 16 electron configurations. On standing, these species undergo cage rearrangements, via CC bond activation reactions. Structural data have been obtained for a number of the fused ring species, as well as one of the rearrangement products.  相似文献   

7.
Titania hybrid photocatalysts containing 0.5, 1.0, 2.0, and 5.0 wt% of rhodium(III) were prepared by chemisorption of RhCl3 × 3H2O onto anatase hydrate powder (TH). Analytical data suggest that a titania–trichlororhodate complex is produced containing a [TiO2]–O–Rh bond.Similar results are found in the case of modification by RhBr3 × 3H2O. Diffuse reflectance spectra exhibit an absorption shoulder throughout the visible region down to 700 nm. Photoelectrochemical measurements indicate that the quasi-Fermi level of electrons is gradually shifted to more anodic potentials with increasing rhodium loading reaching a value of ?0.34 V at pH 7 (vs. NHE) in the case of 5.0%RhCl3/TH. This is more anodic by 210 mV as compared to unmodified TH. Upon visible light irradiation this photocatalyst induces a fast mineralization of 4-chlorophenol whereas cyanuric acid, which is known to be mineralized in the presence of the analogous Pt(IV) modified titania, is not degraded.  相似文献   

8.
BaCO3 nanoparticles are demonstrated as outstanding electrocatalysts to enhance the high temperature oxygen reduction reaction (ORR) in solid oxide fuel cells (SOFCs). BaCO3 nanoparticles are formed from thermal decomposition of barium acetate, Ba(Ac)2 infiltrated to porous cathode skeleton and shows good chemical compatibility with cathode materials. BaCO3 nanoparticles can greatly reduce the area specific resistance (ASR) of typical SOFC cathode materials, including La0.8Sr0.2FeO3  (LSF), La0.6Sr0.4Co0.2Fe0.8O3  (LSCF) and La0.8Sr0.2MnO3  (LSM). For example at 700 °C, ASR for LSF on yttria-stabilized zirconia (YSZ) electrolyte decreases from 2.95 Ω cm2 to 0.77 Ω cm2 when 12.9 wt.% BaCO3 nanoparticles are deposited on the surface of the porous LSF electrode. Impedance spectra analysis shows that the decrease in ASR mainly comes from the reduction of the low frequency resistance. Furthermore, BaCO3 nanoparticles are found to greatly enhance the oxygen chemical exchange coefficient. Most importantly, it has been found that the catalytic activity of BaCO3 nanoparticles is even higher than those of the precious metals such as Pd, Rh, Pt and Ag, infiltrated into LSF, LSCF and LSM electrodes supported on YSZ electrolytes.  相似文献   

9.
An unmodified Pt microelectrode and a Pt microelectrode coated with polyaniline were used in conjunction with a scanning electrochemical microscope (SECM) to study anodic dissolution in the Fe│H2SO4 system. The concentrations of Fe2 + (cFe2 +) measured with the unmodified microelectrode and the pH values measured with the polyaniline-modified microelectrode were recorded in situ during current oscillations in the Fe│H2SO4 system and were found to change periodically at the Fe│H2SO4 interface. The changes in cFe2 + may be caused by the periodic formation and dissolution of surface film(s), which could be salt films and/or oxide films. If a salt film is formed, it is unlikely to affect the pH. Since the pH changes periodically during the current oscillations, it can be deduced that the surface film is mainly composed of oxide, and that the formation and dissolution of the oxide film play a key role in the current oscillations of the system.  相似文献   

10.
3,6-Bis(2-thienyl)-1,2,4,5-tetrazine (bttz) reacts with trans-Pt(dmso)2(mes)2, mes = mesityl = 2,4,6-trimethylphenyl, under twofold cyclometallation to yield structurally characterized (μ-bttz-2H+)[Pt(dmso)(mes)]2 with uncoordinated thiophene sulfur atoms and bttz deprotonated in the 3,3′ positions. The structural features include cis-positioned carbanionic ligands, twisted mesityl substituents, S-coordinated dmso ligands with the SO bonds lying in the molecular plane, shortened inter-ring bonds, and rather short Pt–C bonds at 1.998(9)/2.00(1) Å (Pt–Cmes) and 1.985(9)/1.99(1) Å (Pt–Cbttz-2H+). Reversible reduction to {(μ-bttz-2H+)[Pt(dmso)(mes)]2}? causes a high-energy shift of the charge transfer bands and the appearance of an unresolved EPR signal at g = 1.9905.  相似文献   

11.
Novel titanium-supported nanoporous network bimetallic Pt–Ir/Ti electrocatalysts (S1:Pt59Ir41/Ti, S2:Pt44Ir56/Ti, S3:Pt22Ir78/Ti) have been successfully fabricated by the hydrothermal process. The nanoparticles of Pt and Ir were deposited on the titanium substrates in the presence of formaldehyde as a reduction agent. The electrocatalytic activity of these electrocatalysts towards formic acid oxidation in 0.5 M H2SO4 + 0.5 M HCOOH solutions was investigated using cyclic voltammograms (CVs), linear sweep voltammograms (LSVs), chrono amperometry and electrochemical impedance spectroscopy (EIS). The CVs of S1, S2 and S3 exhibit two anodic peaks in the forward scan and one anodic peak in the reverse scan which are similar to the pure Pt. Their LSVs show that the three samples present significantly high current densities of formic acid oxidation compared to the Pt electrode. It is observed from the chrono amperometric measurements at potential 600 mV that the sample S2 delivers a steady-state current density that is 545 times larger than that for the pure Pt electrode. EIS analysis shows that the impedances on both the imaginary and real axes of S1, S2 and S3 are much lower than those of the pure Pt. Among the three samples (S1, S2 and S3), S2 exhibits the highest electrocatalytic activity towards the formic acid oxidation.  相似文献   

12.
(Liquid + liquid) equilibrium data for ternary and quaternary systems containing n-hexane (C6H14), toluene (C7H8), m-xylene (C8H10), propanol (C3H8O), sulfolane (C4H8SO2), and water (H2O) were measured at T = 303.15 K. Phase diagrams of {w1C4H8SO2 + w2C7H8 + (1  w1  w2)C6H14}, {w1C4H8SO2 + w2C8H10 + (1  w1  w2)C6H14}, {w1C4H8SO2 + w2C3H8O + w3C7H8 + (1  w1  w2  w3)C6H14} and also systems containing water: {w1C4H8SO2 + w2H2O + w3C7H8 + (1  w1  w2  w3)C6H14} and {w1C4H8SO2 + w2H2O + w3C8H10 + (1  w1  w2  w3)C6H14} (w = mass fraction) were obtained at T = 303.15 K. The (liquid + liquid) equilibrium data of the systems were used to obtain interaction parameters in non-random two-liquid (NRTL) and universal quasi-chemical theory (UNIQUAC) activity coefficient models. These parameters can be used to predict equilibrium data of ternary and quaternary systems. The root mean square deviations (RMSDs) using these models were calculated and reported. The partition coefficients and the selectivity factors of solvents for extraction of toluene or m-xylene from n-hexane at T = 303.15 K are calculated and presented. The experimental selectivity factors of sulfolane for the system {w1C4H8SO2 + w2C7H8 + (1  w1  w2)C6H14} at T = 298.15 K and T = 323.15 K were taken from the literature and the influence of temperature on the extraction of toluene was also investigated. The phase diagrams for the ternary and quaternary systems including both the experimental and correlated tie lines are presented. The tie-line data of the studied systems were also correlated using the Hand equation and the correlation parameters are calculated and reported.  相似文献   

13.
Novel nano-structured Pd+yttrium doped ZrO2 (YSZ) electrodes have been developed as cathodes of intermediate temperature solid oxide fuel cells (IT-SOFCs). Nano-sized Pd particles were introduced into the rigid and porous YSZ structure by PdCl2 solution impregnation. The results show that Pd nanoparticles (20–80 nm) were uniformly distributed in the porous YSZ structure; and such nano-structured composite cathodes were highly active for the O2 reduction reaction, with polarization resistances (RE) of 0.11 and 0.22 Ω cm2 at 750 and 700 °C and activation energy of 105 kJ mol−1 that is significantly lower than those for the conventional perovskite-based cathodes (130–201 kJ mol−1).  相似文献   

14.
We characterized the electrocatalytic activity of platinum electrode modified by underpotential deposited lead (PtPbupd) for a formic acid (HCOOH) oxidation and investigated the influence on the power performance of direct formic acid fuel cells (DFAFC). Based on the electrochemical analysis using cyclic voltammetry and chronoamperometry, PtPbupd electrode modified by underpotential deposition (UPD) exhibited significantly enhanced catalytic activity for HCOOH oxidation below anodic overpotential of 0.4 V (vs. SCE). Multi-layered PtPbupd electrode structure of Pt/Pbupd/Pt resulted in more stable and enhanced performance using 50% reduced loading of anode catalyst. The performance of multi-layered PtPbupd anode is about 120 mW/cm2 at 0.4 V and it also showed a sustainable cell activity of 0.52 V at an application of constant current loading of 110 mA/cm2.  相似文献   

15.
The photodissociations of acetophenone (C6H5COCH3) have been investigated by density functional theory (DFT) approach. The experimentally observed three photodissociation channels were clarified from the theoretical calculations on the related reactants, transition states (TSs), and products. Two of the three channels, C6H5COCH3  C6H5CO + CH3 and C6H5COCH3  C6H5 + CH3CO, were assigned to Norrish I reactions on the potential energy surfaces (PESs) of the lowest triplet state (T1). And, the first one is more favorable for lower barrier. The subsequent decompositions, C6H5CO  C6H5 + CO and CH3CO  CH3 + CO, were also studied by the similar calculations as above. The third photodissociation channel, C6H5COCH3  C6H5CH3 + CO, has been documented on the PESs of the ground state (S0). The third one played a minor role in the photodissociations of C6H5COCH3 for much higher barrier than the first two.  相似文献   

16.
Nanoclusters of Pt, Pt–Rh, Pt–SnO2 and Pt–Rh–SnO2 were successfully synthesized by polyol method and deposited on high-area carbon. HRTEM and XRD analysis revealed two phases in the ternary Pt–Rh–SnO2/C catalyst: solid solution of Rh in Pt and SnO2. The activity of Pt–Rh–SnO2/C for ethanol oxidation was found to be much higher than Pt/C and Pt–Rh/C and also superior to Pt–SnO2/C. Quasi steady-state measurements at various temperatures (30–60 °C), ethanol concentrations (0.01–1 M) and H2SO4 concentrations (0.02–0.5 M) showed that Pt–Rh–SnO2/C is about 20 times more active than Pt/C in the potential range of interest for the fuel cell application.  相似文献   

17.
The inhibition effect of 1-methyl pyrazole (MPA) on the acidic corrosion of iron in 1.0 M HCl was studied at different concentrations (10?3–10?2 M) by potentiodynamic polarization and electrochemical impedance spectroscopy, and EIS measurements. It is found from the polarization studies that methyl pyrazole (MPA) behaves mainly as anodic inhibitor in HCl. Values of polarization resistance (Rp) and double layer capacitance (Cdl) in the absence and presence of MPA in 1.0 M HCl are determined. The adsorption of MPA on iron surface from HCl is found to obey Temkin adsorption isotherm.  相似文献   

18.
A large area cathode-supported electrolyte film, comprising porous (La0.8Sr0.2)0.95MnO3 (LSM95) cathode substrate, LSM95/Zr0.89Sc0.1Ce0.01O2?x (SSZ) cathode active layer, and SSZ electrolyte, has been successfully fabricated by tape casting and co-sintering techniques. The interface reaction between cathode and electrolyte was inhibited by using A-site deficient LSM. A dense enough SSZ thin film with a thickness of ~26 μm was obtained at 1250 °C. By using Pt as anode, the obtained single cell reached the maximum power density of 0.54 W cm?2 at 800 °C in O2/humidified H2, with open circuit voltage (OCV) value of 1.08 V.  相似文献   

19.
The reaction mechanism for the complete catalytic cycle of the Heck reaction (between phenyl bromide, C6H5Br, and ethylene, C2H4, in the presence of the base, NEt3 to form the product styrene, C6H5–C2H3), catalyzed by diphosphinopalladium complexes, Pd(PR3)2 {R = H, Me, Ph}, was investigated by using density functional theory (DFT). The relative free energies of the fully-optimized species in gas phase at 298.15 K and 1 atm were corrected for solvation in DMSO at 1 mol/L by using conductor-like polarizable continuum model (CPCM). The calculations indicate a four-step mechanism for the catalysis, including oxidative addition of C6H5Br, migratory insertion of C6H5 to C2H4, β-hydride transfer/olefin elimination of product, and catalyst regeneration by removal of HBr. Our calculations demonstrate that Pd π-complexes can be formed with phenyl bromide and ethylene before the oxidative addition occurs. Subsequently, various reaction paths were studied for the oxidative addition of phenyl bromide to palladium complexes, coordinated by phosphine(s) and/or ethylene. Interestingly, all pathways lead to palladium monophosphine as the active catalyst. Careful exploration was made on two possible pathways for the migratory insertion and β-hydride-transfer/olefin elimination: (1) the neutral path with bromide bound to Pd and (2) the cationic path with prior bromide ion dissociation. The neutral path is preferred to the cationic path, especially when the more bulky phosphines such as triphenylphosphine are involved.  相似文献   

20.
Bidirectional extracellular electron transfer of strain Comamonas testosteroni I2 was for the first time investigated with electrochemical active biofilms developed under different conditions. The electrochemical active biofilm developed under microbial fuel cell conditions was capable of anodic electron transfer via attached redox species with standard potential of 0.04 V (vs. SCE). Meanwhile the above redox species lost its catalytic capability when the biofilm was developed under a constant potential (− 0.4 V vs. SCE). Instead, the microbe adjusted its electron transfer strategy to a soluble shuttle (standard potential − 0.20 V vs. SCE) and enabled a cathodic current. Air exposure experiment verified that the soluble shuttle at negative potential had a positive response to the oxygen; meanwhile the anodic electron transfer via the attached species was rarely influenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号