首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the perturbation formulas based on a two-spin-orbit-parameter model, the electron paramagnetic resonance (EPR) zero-field splitting (D), g-factors (g//, g) and hyperfine structure constants (A//, A) for V2+ in Cd2+(I) and Cd2+(II) sites of CsCdCl3 crystal at room and liquid nitrogen temperatures are calculated. From the calculations, the signs of zero-field splittings and hyperfine structure constants are determined and so all of the EPR parameters are explained reasonably on the basis of the structure data of lattice.  相似文献   

2.
The anisotropic and isotropic spin-Hamiltonian parameters (g factors and hyperfine structure constants) of tetragonal Cu(H2O)62+ clusters due, respectively, to the static and dynamic Jahn–Teller effects for Cu2+ in trigonal A2Mg3(NO3)12·24H2O (A = La, Bi) crystals are calculated from the high-order perturbation formulas based on the cluster approach. In the approach, the admixture between the d orbitals of 3dn ion and the p orbitals of ligand ion via covalence effect is considered. All of the calculated results are in agreement with the experimental values. The tetragonal elongations (characterized by ΔR = R// ? R) of Cu(H2O)62+ cluster due to the Jahn–Teller effect in A2Mg3(NO3)12·24H2O crystals are acquired from the calculations. The results are discussed.  相似文献   

3.
The samples of dibarium magnesium orthoborate Ba2Mg(BO3)2 were synthesized by solid-state reaction. The X-ray diffraction (XRD) patterns and Raman spectra of the samples were collected. Electronic structure and vibrational spectroscopy of Ba2Mg(BO3)2 were systematically investigated by first principle calculation. A direct band gap of 4.4 eV was obtained from the calculated electronic structure results. The top valence band is constructed from O 2p states and the low conduction band mainly consists of Ba 5d states. Raman spectra for Ba2Mg(BO3)2 polycrystalline were obtained at ambient temperature. The factor group analysis results show the total lattice modes are 5Eu + 4A2u + 5Eg + 4A1g + 1A2g + 1A1u, of which 5Eg + 4A1g are Raman-active. Furthermore, we obtained the Raman active vibrational modes as well as their eigenfrequencies using first-principle calculation. With the assistance of the first-principle calculation and factor group analysis results, Raman bands of Ba2Mg(BO3)2 were assigned as Eg (42 cm−1), A1g (85 cm−1), Eg (156 cm−1), Eg (237 cm−1), A1g (286 cm−1), Eg (564 cm−1), A1g (761 cm−1), A1g (909 cm−1), Eg (1165 cm−1). The strongest band at 928 cm−1 in the experimental spectrum is assigned to totally symmetric stretching mode of the BO3 units.  相似文献   

4.
《Solid State Sciences》2007,9(10):961-963
Electron paramagnetic resonance (EPR) and optical studies have been carried out on Cu2+ doped bis(thiourea)cadmium chloride single crystal, which belongs to a potential semi-organic non-linear material, at room temperature. The spin Hamiltonian parameters were determined as gxx = 2.04331, gyy = 2.04373, gzz = 2.05750 and Axx = 91G, Ayy = 115G, Azz = 136G. These parameters suggest that the spectroscopic splitting parameter g and hyperfine splitting parameter A exhibit rhombic symmetry. The optical study reveals that the non-linear optical property of the host lattice has been enhanced due to Cu2+ doping.  相似文献   

5.
In contrast to well established experimental results of vibronic coupling effects in octahedral dn complexes with Eg ground states (Cu2+, Ag2+; Cr2+, Mn3+ etc.), not much useful material is available for the Jahn–Teller (JT) effect in orbital triplet ground states. The present study is concerned with this deficiency, providing data for octahedral halide model complexes with 3dn cations – in particular for TiIII, VIII and high-spin CoIII, NiIII with T2g and T1g ground states, which involve, to first-order, solely splitting of the π-antibonding t2g MOs. Besides experimental results – structural and spectroscopic, mainly from d–d spectra – data from computations are needed for a quantitative treatment of the Tg ? (?g + τ2g) vibronic interaction as well as in the Eg ? ?g coupling case (MnIII, low-spin NiIII); DFT was the method of choice, if only critically selected outcomes are utilised. The theoretical bases of the treatment are the dn ligand field matrices in Oh, extended by the inclusion of lower-symmetry distortion parameters, and the conventional theory of vibronic coupling. Caution is needed when classifying the effects of interelectronic repulsion; DFT does not reproduce the magnitudes of the Racah parameters B, C, as deduced from the d–d spectra, properly – the presumed reasons are analysed. DFT even allows one to deduce reliable vibronic coupling constants via the analysis of orbitally degenerate excited states (CrIII, 4A2g ground state). The group-theoretical analysis of the interaction with the JT-active ?g and τ2g modes yields D4h, D3d and D2h as the possible distortion symmetries in the case of a Tg ground state. The DFT-calculations give clear evidence, that the D4h stationary points represent the absolute minima in the Tg ? (?g + τ2g) potential surface – in agreement with experiment, where available. For the first time, vibronic coupling constants, characterising JT splitting of ground and excited Tg states, can be presented for trivalent 3dn cations in octahedral halide ligand fields. They turn out to be smaller by a factor of almost 3 in comparison to those, which determine the coupling in σ-antibonding eg MOs.The tetragonal splitting of Tg states is typically only small, around 0.1 eV, and suggests that strain influences from a specific ligand arrangement and/or the presence of different ligands may modify the potential surface considerably. We have studied such effects via compounds AIMIIIF4, where an elastic strain induced by the host structure, and a binding strain, due to the simultaneous existence of (largely) terminal and of bridging ligands, are active. A novel strain model, in its interplay with JT coupling, is proposed and applied – using energies from the d–d spectra, structural results and data from DFT.Chloride complexes are only known for TiIII to FeIII; the rather small electronegativity already of CoIII suggests a reducing ligand-to-metal (3dn) electron transfer for n  6. Similarly, the low-lying ligand-to-metal charge transfer bands in the d–d spectra of the CuIIIF63? complex and the reduced Tg ? ?g coupling strength suggest a pronounced covalency of the CuIII–F, and, even more distinctly, of the CuIII–O bond, which is of interest for superconductivity. The NiIIIF63? polyhedron possesses a low-spin configuration in the elpasolite structure. The spectroscopic evidence and the DFT data indicate, that the minimum positions of the alternative a2A1g(a2Eg) and a4A2g (a4T1g) potential curves are only ≤0.02 eV apart, giving rise to interesting high-spin/low-spin phenomena. It is the strong Eg ? ?g as compared to the T1g ? ?g coupling, which finally stabilises a spin-doublet ground state in D4h.We think, that the selected class of solids is unique particularly for the study of Jahn–Teller coupling in T ground states, with model character for other systems. In our overview a procedure is sketched, which uses reliable computational results (here from DFT) for supplementing incomplete experimental data, and presents – on a semiquantitative scale – convincing statements, consistent with chemical intuition. It is also a pleading for ligand field theory, which rationalises d-d spectra in terms of chemical bonding; though the latter spectra provide frequently only rather coarse information, their assistance in the energy analysis is crucial.  相似文献   

6.
Nd3+ doped H3BO3–PbO–TeO2–RF (R = Li, Na and K) glasses were prepared through melt quenching technique. Optical absorption and near infrared (NIR) fluorescence spectra were recorded at room temperature. The spectral intensities were analyzed in terms of the Judd–Ofelt (J–O) parameters (Ωλ = 2, 4, 6). The covalency effect of Nd–O bond on the J–O parameters was estimated from the relative absorbance ratio (R) between 4I9/2  4F7/2 and 4I9/2  4S3/2 transitions. The effect of Nd–O covalency on the Ω4 and Ω6 intensity parameters as well as on the spontaneous emission probabilities (AR) was discussed. Lomheim and Shazer hybrid method was applied to determine the fluorescence branching ratios (βR) of each emission transition from the 4F3/2 metastable level to its lower lying levels. The evaluated total radiative transition probabilities (AT), stimulated emission cross-sections (σe) and gain bandwidth parameters (σe × ΔλP) were compared with the earlier reports.  相似文献   

7.
8.
Crystal of a new neodymium oxyborate fluoride Nd6Li(BO3)3O4F2 was grown by the flux method. Its structure, determined by single crystal x-ray diffraction, belongs to the space group C2/c with cell parameters of a = 12.0629(2) Å, b = 6.94650(10) Å, c = 16.0528(3) Å, β = 104.5360(10)°. In the structure, Nd atoms coordinate to oxygen or fluorine atoms to yeild 7 or 8 coordinated Nd(O,F)n polyhedra. Those polyhedra are edge-shared to form a double layer of (Nd12O23F4)14? fluorite blocks. The blocks are linked by oxygen atoms of planar BO3 groups in the c direction into a 3-dimensional network. Another novel element in the structure is that Li coordinates to 6 oxygen atoms from three BO3 groups forming a propeller like arrangement, and theoretical calculation shows that such arrangement should give 3/4 that of BO3 contribution to second harmonic effect. The crystal shows deep violet color with typical Nd3+ optical absorption and a UV transmission cut-off of 260 nm.  相似文献   

9.
The avoided-crossing molecular-beam method has been applied to CH3SiF3 in the ground torsional state. Stark and hyperfine rotational anticrossings have been studied, along with barrier anticrossings in which the zero-field energy differences depend only on the torsionial splittings. For υ = 0, pure rotational spectra were measured forJ = 13 ← 12 and 14 ← 13 with a mm-wave spectrometer and for J = 1 ← 0 with the molecular-beam spectrometer. Stark and Zeeman studies have been carried out with conventional beam techniques. From a simultaneous analysis of existing microwave data for υ ? 2 and the current measurements, it was found that the moment of inertia of the methyl top Iα = 3.170(2) amu A2, the effective rotational constants Aeff = 4059.522(22) Mhz, and the effective height of the barrier V3eff = 413.979(14) cm?1. The true values of A and V3 have been obtained within certain approximations. The rotational constant B and several distortion constants including DK were evaluated. In addition to determining the electric dipole moment μ 2.33938(14) D, the data yielded values for the distortion dipole constants μD and μJ, and the molecular g-factors g| and g.  相似文献   

10.
The hydrothermal syntheses and structures of two new open-framework iron phosphates, [C5N2H14]2[FeIII2F2(HPO4)4]·2H2O, I, and [C5N2H14][FeIII4(H2O)4F2(PO4)4], II, are presented. While the structure of I consist of FeO4F2 octahedra and HPO4 terahedra linked to form one-dimensional structure, that of II consist of FeO4(H2O)2, FeO4(H2O)F, FeO4F2 and PO4 units connected to give rise to a three-dimensional structure. The structure of I resembles the naturally occurring mineral tancoite while II resembles the iron phosphate, ULM-12, [C6N2H14][Fe4(PO4)2F2(H2O)3]. Magnetic susceptibility studies indicate anti-ferromagnetic behavior in both the compounds with TN=200 and 175 K for I and II, respectively. Crystal data: I, monoclinic, space group=P21/n (no. 14). a=7.2261(6), b=16.5731(14), c=11.0847(10) Å, β=97.265(2)°, V=1316.8(2) Å3, Z=4, ρcalc=1.952 g cm−1, μ(MoKα)=1.446 mm−1, R1=0.0448 and wR2=0.1141 for 1882 data [I>2σ(I)]; for II, monoclinic, space group=P21/n (no. 14). a=9.9691(3), b=12.4013(3), c=17.3410(3) Å, β=103.762(1)°, V=2082.32(9) Å3, Z=4, ρcalc=2.576 g cm−1, μ(MoKα)=3.162 mm−1, R1=0.0510 and wR2=0.1064 for 2979 data [I>2σ(I)].  相似文献   

11.
A new indium hydroxyphosphate containing silver, AgIn[PO3(OH)]2, has been synthesized using hydrothermal method. It crystallizes in the P21/c space group with the cell parameters a = 6.6400(2) Å, b = 14.6269(6) Å, c = 6.6616(4) Å, β = 95.681(5)°, V = 643.82(6) Å3, Z = 4. Its three-dimensional framework, built up of corner-sharing PO3(OH) tetrahedra and InO6 octahedra, presents intersecting tunnels running along <111> and [100] directions, in which the Ag+ cations are located. The presence of hydroxyl groups has been confirmed from IR spectroscopy studies and hydrogen atoms were located from the single crystal X-ray diffraction study. The structural relationships with the other compounds of general formula AIMIII[PO3(OH)]2 are analyzed.  相似文献   

12.
《Polyhedron》2005,24(6):723-729
The mixed ligand complex [La(hfa)3(Phen)2] (I) was obtained by the interaction of La(hfa)3 and Phen; its composition does not depend on the stoichiometry of the reagents. According to the X-ray single crystal analysis data, complex I crystallizes in the monoclinic space group P21/n, with a = 13.583(3) Å, b = 16.959(3) Å, c = 18.860(4) Å, β = 94.71(3)° and Z = 4. The structure of I consists of isolated mononuclear molecules, the coordination number of La being 10. Thermal behaviour and composition of the vapor phase have been studied for I by thermal analysis and mass-spectrometry using a Knudsen cell. The mixed ligand complex I was found to sublime congruently in the temperature range 370–460 K: [La(hfa)3(Phen)2](s) = [La(hfa)3(Phen)](g) + Phen(g), ΔrH0(T) = 316.2 ± 1.8 kJ/mol.  相似文献   

13.
《Solid State Sciences》2007,9(9):792-803
The crystal structure of Pb2SbS2I3 was solved at room temperature and 100 K. At 293 K it crystallizes in the orthorhombic system, space group Cmcm (No. 63), with unit cell parameters a = 4.3262(9), b = 14.181(3), c = 16.556(3) Å, V = 1017.7(4) Å3, Z = 4. The structure is disordered, and combines a split Pb site (s.o.f. = 0.50) with one mixed (Pb,Sb) site with Pb and Sb in two distinct sub-positions. At 100 K, it is monoclinic, space group P21/c, with unit cell parameters a = 7.3629(6), b = 16.466(3), c = 8.5939(7) Å, β = 107.14(2)°, V = 995.6(2) Å3, Z = 4. The structure is now fully ordered, without mixed sites. On the basis of bond valence calculations, new cation distributions are proposed for published structures of the Sn isotypes, Sn2SbS2I3 and Sn2SbSe2I3. A re-examination of the crystal structures of various (Pb/Sn/Sb) chalcogeno-iodides is presented according to modular analysis. All these structures can be described according to three types of 1D modules, (Pb/Sn)I4, (Sn)2I4 and (Pb/Sn/Sb)4(S/Se)2I4. Generally each type of 1D module gives one type of slab, and the final structure corresponds to a specific stacking of two or three among these slabs. A new structural model is proposed for “α-Sn2SI2”, which would have the non-stoichiometric composition (Sn5.420.58)S2(I6.870.12), ideally Sn27S10I34, with probably a narrow solid solution field on the SnS–SnI2 joint.  相似文献   

14.
Two distinctive theoretical methods, the complete diagonalization (of energy matrix) method (CDM) and the perturbation theory method (PTM), are employed to calculate the optical band positions and EPR g factors g//, g for the tetragonal Cu2+ centers in trigonal ZnCO3 crystal. The results from the two methods coincide and are also in good agreement with the experimental values. So both the CDM and PTM are adequate for the investigations of optical and EPR data for d9 ions in crystals. The tetragonal distortion due to the static Jahn–Teller effect for the tetragonal Cu2+ centers in trigonal Zn2+ site of ZnCO3 is also acquired from the calculations. The results are discussed.  相似文献   

15.
The gas phase IR spectrum of isothiazole, C3H3NS, between 550 and 1700 cm−1 was recorded with a resolution of ca. 0.003 cm−1. The rotational structure of seven fundamental bands in the region 750–1500 cm−1 has been assigned and analysed by the Watson Hamiltonian model. A number of local resonances in the bands have been identified and explained qualitatively in terms of Coriolis interactions. For each band upper state spectroscopic constants, including band center, rotational constants, and quartic centrifugal distortion constants are given. From observed crossings due to resonances we locate the weak bands ν9(A′) and ν13(A′) at 1041.9(2) and 642.0(3) cm−1, respectively. The anharmonic frequencies have been determined using a cc-pVTZ basis set, at the MP2 and B3LYP levels; the two theoretical methods give very similar results for rotational constants, anharmonic band center frequencies and distortion constants, and many of these are in good agreement with experiment.  相似文献   

16.
The apparent molar heat capacities Cp, φ  and apparent molar volumes Vφ  of Y2(SO4)3(aq), La2(SO4)3(aq), Pr2(SO4)3(aq), Nd2(SO4)3(aq), Eu2(SO4)3(aq), Dy2(SO4)3(aq), Ho2(SO4)3(aq), and Lu2(SO4)3(aq) were measured at T =  298.15 K and p =  0.1 MPa with a Sodev (Picker) flow microcalorimeter and a Sodev vibrating-tube densimeter, respectively. These measurements extend from lower molalities of m =  (0.005 to 0.018) mol ·kg  1to m =  (0.025 to 0.434) mol ·kg  1, where the upper molality limits are slightly below those of the saturated solutions. There are no previously published apparent molar heat capacities for these systems, and only limited apparent molar volume information. Considerable amounts of the R SO4 + (aq) and R(SO4)2  (aq) complexes are present, where R denotes a rare-earth, which complicates the interpretation of these thermodynamic quantities. Values of the ionic molar heat capacities and ionic molar volumes of these complexes at infinite dilution are derived from the experimental information, but the calculations are necessarily quite approximate because of the need to estimate ionic activity coefficients and other thermodynamic quantities. Nevertheless, the derived standard ionic molar properties for the various R SO4 + (aq) and R(SO4)2  (aq) complexes are probably realistic approximations to the actual values. Comparisons indicate that Vφ  {RSO4 + , aq, 298.15K}  =   (6  ±  4)cm3· mol  1and Vφ  {R(SO4)2  , aq, 298.15K}  =  (35  ±  3)cm3· mol  1, with no significant variation with rare-earth. In contrast, values of Cp, φ  { RSO4 + , aq, 298.15K } generally increase with the atomic number of the rare-earth, whereas Cp, φ  { R(SO4)2  , aq, 298.15K } shows a less regular trend, although its values are always positive and tend to be larger for the heavier than for the light rare earths.  相似文献   

17.
《Chemical physics letters》1999,291(1-2):75-81
The fluorescence spectrum of all-trans-β-carotene was recorded at 170 K. The 1Bu+  1Ag fluorescence exhibited clear vibrational structures constituting a mirror image with those of the 1Bu+  1Ag absorption, and the deconvolution of the entire spectrum identified the 2Ag(0)  1Ag(0) transition at 14 500 cm−1. The displacements of the 1Bu+ and 2Ag potential minima along ν1 and ν2 (the CC stretching and C–C stretching normal coordinates, respectively) were determined to be 1.2 and 0.9, and 1.6 and 1.5, respectively. Thus, much larger potential displacements in the 2Ag state than in the 1Bu+ state have been shown.  相似文献   

18.
The relations between the spin Hamiltonian (SH) parameters and crystal structure of Cr4+:α-Al2O3 crystals have been established. On the basis of this, the SH parameters including zero-field splitting parameter D and Zeeman g-factors (g|| and g) for Cr4+ ions in Cr4+:α-Al2O3 crystals, taking into account the spin–spin (SS), spin-other-orbit (SOO) and orbit–orbit (OO) magnetic interactions in addition to the spin–orbit (SO) magnetic interaction, are theoretically investigated using complete diagonalization method (CDM). The theoretical results are in excellent agreement with the experimental ones when the upper three O2? ions rotate 0.94° toward [1 1 1] axis and the lower three O2? ions rotate 0.92° toward it. Hence, the local structure distortion effect plays an important role in explaining the spectroscopic properties of Cr4+ ions in Cr4+:α-Al2O3 crystals. This study shows that for Cr4+:α-Al2O3 the contributions arising from SS, SOO, and OO interactions to the zero-field splitting (ZFS) parameter D are appreciable, whereas those to g|| and g are quite small.  相似文献   

19.
A series of organometallic molybdenum/iron/sulfur clusters of the general formula [Cp1MoFe3S4Ln]m (Cp1 = η5-C5Me5; L = StBu, SPh, Cl, I, n = 3, m = 1−; Ln = I2(PtBu3), m = 0; L = 2,6-diisopropylphenylisocyanide (ArNC), n = 7, m = 1+) have been synthesized. A cubane cluster (PPh4)[Cp1MoFe3S4(StBu)3] (2) was isolated from a self-assembly reaction of Cp1Mo(StBu)3 (1), FeCl3, LiStBu, and S8 followed by cation exchange with PPh4Br in CH3CN, while an analogous cluster (PPh4)[Cp1MoFe3S4(SPh)3] (3) was obtained from the Cp1MoCl4/FeCl3/LiSPh/PPh4Br reaction system or from a ligand substitution reaction of 2 with PhSH. Treatment of 2 with benzoyl chloride gave rise to (PPh4)[Cp1MoFe3S4Cl3] (4), which was in turn converted to (PPh4)[Cp1MoFe3S4I3] (5) by the reaction with NaI. A neutral cubane cluster Cp1MoFe3S4I2(PtBu3) (6) was generated upon treating 5 with PtBu3. Although reduction of 4 by cobaltocene under the presence of ArNC resulted in a disproportionation of the cubane core to give Fe4S4(ArNC)9Cl (7), a similar reduction reaction of 5 produced [Cp1MoFe3S4(ArNC)7]I (8), where the MoFe3S4 core was retained. The crystal structures of 46, and 8 were determined by the X-ray analysis.  相似文献   

20.
The interaction between the zwitterionic buffers (3-[N-bis(2-hydroxyethyl)amino]-2-hydroxy propane sulfonic acid, N-(2-actamido)-2-aminoethane sulfonic acid, and 3-[(1,1-dimethyl-2-hydroxyethyl)amino]-2-hydroxy propane sulfonic acid) with some divalent transition metal ions (CuII, NiII, CoII, ZnII, and MnII) were studied at different temperatures (298.15 to 328.15) K at ionic strength I = 0.1 mol · dm−3 NaNO3 and in the presence of 10%, 30%, and 50% (w/w) dioxene by using potentiometry. The thermodynamic stability constants were calculated as well as the free energy change for the 1:1 binary complexation. The protonation constants of the zwitterionic buffers were also determined potentiometrically under the above conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号