首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel oxygen containing spiro ammonium salt, oxazolidine-3-spiro-1’-pyrrolidinium tetrafluoroborate (OPBF4) was synthesized using an innovative technique for use as electrolyte in electrochemical double layer capacitors (EDLC). Comparison of OPBF4 with commercially available, tetraethyl ammonium tetrafluoroborate (TEABF4) showed higher voltage window and higher capacitance for the OPBF4 compound. Moreover, molarity of 3 M was produced with OPBF4 as compared to a maximum of 1.5 M for TEABF4 in acetonitrile (AN). This is especially important to enable the fabrication of higher energy density EDLC. This is the first report of testing OPBF4 compound in an EDLC device, and it qualifies as a reasonable alternative to TEABF4 for high performance ultracapacitors.  相似文献   

2.
Germanium is electrodeposited in a template formed from a dried suspension of silica spheres. The germanium completely fills the pores of the silica matrix. The semiconductor, as deposited, is amorphous but can be crystallized by annealing. Selective dissolution of the silica template gives a macroporous germanium-air sphere matrix, which offers interesting possibilities for photonic applications.  相似文献   

3.
Silicon disk arrays and silicon pillar arrays with a close-packed configuration having an ordered periodicity were fabricated by the electrochemical etching of a silicon substrate through colloidal crystals used as a mask. The colloidal crystals were directly prepared by the self-assembly of polystyrene particles on a silicon substrate. The transfer of a two-dimensional hexagonal array of colloidal crystals to the silicon substrate could be achieved by the selective electrochemical etching of the exposed silicon surfaces, which were located in interspaces among adjacent particles. The diameter of the tip of the silicon pillars could be controlled easily by changing the anodization conditions, such as current density and period of electrochemical etching.  相似文献   

4.
An electrochemical strategy for running nitrogen-transfer reactions on chemically inert anode surfaces has been developed. The generation and trapping of highly reactive nitrene-transfer reagents can be accomplished under mild conditions on platinum electrodes. The key factor that accounts for the high levels of chemoselectivity in this process is the phenomenon of overpotential. We have found that molecules that are similar in terms of propensity toward oxidation can be differentiated on the basis of their affinity to a given electrode surface. Thereby, reactive species can be selectively generated in the presence of acceptor molecules of interest. Specifically, a wide range of structurally dissimilar olefins can be transformed into the corresponding aziridines in the presence of N-aminophthalimide. Likewise, nitrene generation in the presence of sulfoxides leads to their chemoselective transformation into the corresponding sulfoximines. In this paper we discuss the underlying mechanistic foundation of these reactions.  相似文献   

5.
6.
This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.  相似文献   

7.
This review describes the evolution of important concepts related to potential drops at interfaces in electrochemical systems. The role of the thermodynamic theory of electrocapillarity of perfectly polarizable electrodes in the development of interfacial electrochemistry is emphasized. A critical analysis of the phenomenological models of the electrical double layer on ideally polarizable electrodes is given. Certain trends in studying solid electrodes with well-defined surfaces brought into contact with electrolyte solutions are summarized. Attention is drawn to several unsolved problems crucial for the future development of electrochemical surface science. Finally, some recent experimental data are analyzed for selected models.  相似文献   

8.
We analyze and compare the structure of the electrochemical double layer obtained from molecular dynamics simulations of concentrated aqueous NaCl and CsF solutions near a model electrode. The electrode is modeled as a corrugated external potential in conjunction with the image charge model. Calculations are performed for uncharged electrodes and for electrodes carrying positive or negative surface charges.  相似文献   

9.
The intrinsic reactivity of curved nanoscale germanium surfaces, under carefully controlled anodic etch conditions, is exploited to produce intricate three-dimensional helical patterns. Such structures, retaining crystalline Ge character and yielding strong visible emission, demonstrate a feature spacing of a periodic nature that correlates with their measured width.  相似文献   

10.
An approach for the construction of the Hamiltonians and free energy surfaces for adiabatic electrochemical reactions accompanied by a considerable reorganization of the intramolecular structure is presented. For one-electron processes it reproduces the results of Koper and Voth (Chem. Phys. Lett. 282 (1998) 100) without an a priori introduction of a switching function transforming the bonding molecular potential into an antibonding one. The present approach is extended to two-electron processes, which are of importance for the dissociative adsorption and electrocatalysis.  相似文献   

11.
The performance of mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors (EDLCs) was evaluated in the presence of a variety of electrolytes, including room temperature ionic liquids (ILs).  相似文献   

12.
Lead ruthenate pyrochlore Pb2Ru2O7−x was synthesized as a new electrode material for aqueous-electrolyte electrochemical capacitors. The material was characterized using X-ray diffraction, thermogravimetric analysis, BET area analysis, and cyclic voltammetry. Redox processes significantly improve the capacitance of the materials compared to the conventional double layer capacitors. For materials heated at low temperatures, the redox processes merge smoothly resulting in an excellent capacitive behavior. The capacitors built with the lead-ruthenate electrodes show an excellent electrochemical performance under constant-power discharge.  相似文献   

13.
Charge transfer in the course of the electrochemical ion intercalation is typically understood as the transfer of an alkali metal ion across the intercalating material/electrolyte interface. The activation energy of this step determines the rate capability of intercalation-based energy storage devices, which calls for the investigation of the origin of the charge transfer limitations in various intercalation systems. The major focus of the experimental studies in this area is on the experimental determination of the charge transfer rates under different experimental conditions, while molecular modeling approaches allow to unveil the mechanistic aspects of the intercalation processes.  相似文献   

14.
15.
This paper proposes a simple, precise, and controllable method to fabricate wettability-gradient surfaces. Combining electrochemical etching and lithography, different micro/nanostructures can be obtained by adjusting the etching time. After being modified by low energy substances, low adhesive superhydrophobic and sticky hydrophobic regions can be obtained on one surface. Based on the obtained adhesion gradient, droplets of different volumes can be controlled to roll off at dissimilar tilted angles via designing sticky hydrophobic tracks with different widths. Directional transportation of water droplets on curve tracks is also realized based on the anisotropic sliding angles parallel and perpendicular to the tracks.  相似文献   

16.
Electrical double layer capacitors based on ideally polarizable nanoporous carbon electrodes in propylene carbonate with the addition of different 1 M Me3EtNBF4, Me2Et2NBF4, MeEt3NBF4, Et4NBF4, Et3PrNBF4 and Et3BuNBF4 electrolytes have been tested by cyclic voltammetry, chronoamperometry and electrochemical impedance methods. The limits of ideal polarizability, low-frequency limiting capacitance and series resistance, time constant, Ragone plots (energy density vs. power density dependencies) and other characteristics have been discussed. The influence of the electrolyte molar mass on the electrochemical characteristics of the nanoporous carbon electrode cells has been established. The applicability limits of the Srinivasan and Weidner model have been tested.  相似文献   

17.
Mesoporous WC with hexagonal crystal structure was synthesized by a surfactant-assisted polymer method. A new electrocatalyst composed of a small amount of Pt supported on the mesoporous WC exhibited higher activity for electrooxidation of methanol than microporous Pt/WC or Pt/W2C as well as commercial Pt–Ru(1:1)/C catalysts. The mesoporosity and the phase of WC appear important for the high activity. Compared to the commercial Pt–Ru/C catalyst, the Pt/WC (mesoporous) showed the higher activity per mass of Pt by a factor of six even without Ru. Since the catalyst is also stable in electrochemical environment, it could become an alternative electrocatalyst for direct methanol fuel cells.  相似文献   

18.
The electrochemical double layer on Ag in alkaline NaCl solutions was examined ex situ with X-ray photoelectron spectroscopy (XPS). The specimens were removed from the electrolyte with hydrophobic surfaces and under potential control. The potential dependent surface concentrations of the adsorbed anions (Cl, OH), cations (Na+), the surface excess charge and the amount of adsorbed water were determined and compared to the results obtained for acidic NaCl solutions. The distinct differeness found between both electrolytes were discussed in terms of a specific adsorption of hydroxide ions in the basic Cl-electrolyte; i.e., the OH-surface concentration has to be considered for a proper determination of the cationic excess charge and the potential of zero charge. In addition, the initial stages of silver (1) oxide formation were examined with XPS.  相似文献   

19.
In this paper, the dynamical properties of the electrochemical double layer following an electron transfer are investigated by using Brownian dynamics simulations. This work is motivated by recent developments in ultrafast cyclic voltammetry which allow nanosecond time scales to be reached. A simple model of an electrochemical cell is developed by considering a 1:1 supporting electrolyte between two parallel walls carrying opposite surface charges, representing the electrodes; the solution also contains two neutral solutes representing the electroactive species. Equilibrium Brownian dynamics simulations of this system are performed. To mimic electron transfer processes at the electrode, the charge of the electroactive species are suddenly changed, and the subsequent relaxation of the surrounding ionic atmosphere are followed, using nonequilibrium Brownian dynamics. The electrostatic potential created in the center of the electroactive species by other ions is found to have an exponential decay which allows the evaluation of a characteristic relaxation time. The influence of the surface charge and of the electrolyte concentration on this time is discussed, for several conditions that mirror the ones of classical electrochemical experiments. The computed relaxation time of the double layer in aqueous solutions is found in the range 0.1 to 0.4 ns for electrolyte concentrations between 0.1 and 1 mol L(-1) and surface charges between 0.032 and 0.128 C m(-2).  相似文献   

20.
Pikma  Piret  Ers  Heigo  Siinor  Liis  Zhao  Jinfeng  Oll  Ove  Romann  Tavo  Grozovski  Vitali  Siimenson  Carolin  Väärtnõu  Mart  Paalo  Maarja  Härmas  Riinu  Lust  Karmen  Thomberg  Thomas  Jänes  Alar  Nerut  Jaak  Jäger  Rutha  Valk  Peeter  Kivi  Indrek  Maide  Martin  Möller  Priit  Kanarbik  Rait  Nurk  Gunnar  Lust  Enn 《Journal of Solid State Electrochemistry》2023,27(7):1547-1591

The electrochemistry nowadays has many faces and challenges. Although the focus has shifted from fundamental electrochemistry to applied electrochemistry, one needs to acknowledge that it is impossible to develop and design novel green energy transition devices without a comprehensive understanding of the electrochemical processes at the electrode and electrolyte interface that define the performance mechanisms. The review gives an overview of the systematic research in the field of electrochemistry in Estonia which reflects on the excellent collaboration between fundamental and applied electrochemistry.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号