首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal-oxygen systems are an attractive option to enhance the specific energy of secondary batteries. However, their power is limited by the oxygen electrode. In this communication we address the issue of the sluggish kinetics of the oxygen cathode in the aprotic Li–O2 batteries. The electrochemical performances of newly designed carbon electrodes coated with 50 Å thick Au layer are evaluated and compared with those of unmodified electrodes. Despite the low noble metal content (~ 2 wt.%), the Li–O2 batteries built with the abovementioned Au-coated cathodes show considerably enhanced kinetics as demonstrated by the higher onset potentials for the oxygen reduction reaction (~ 2.6 V at a current rate of 1000 mA g 1), together with reduced oxygen evolution potentials.  相似文献   

2.
3.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in aprotic solvents are elementary reactions for the discharging and charging processes on the cathode of the lithium-oxygen batteries, respectively. Understanding the mechanisms of these reactions at a molecular level has now become a bottleneck that hinders the development of the battery. This short article briefly reviews recent progresses in the studies of the ORR/OER mechanism in aprotic solvents. Two reaction mechanisms, the electrochemical pathway and chemical (disproportionation) pathway, will be discussed with their contribution to the ORR process on the cathode surface. Furthermore, the origin of the OER overpotential will also be discussed. The solutions to reduce the OER overpotential are noted with development of redox mediators.  相似文献   

4.
Aprotic rechargeable lithium–air batteries(LABs) with an ultrahigh theoretical energy density(3,500 Wh kg-1) are known as the‘holy grail’ of energy storage systems and could replace Li-ion batteries as the next-generation high-capacity batteries if a practical device could be realized. However, only a few researches focus on the battery performance and reactions in the ambient air environment, which is a major obstacle to promote the practical application of LABs. Here, we have summar...  相似文献   

5.
《中国化学快报》2023,34(8):108056
Nitrogen-doped carbon catalysts with hierarchical porous structure are promising oxygen evolution reaction (OER) catalysts due to the faster mass transfer and better charge carrying ability. Herein, an exquisite high nitrogen-containing ligand was designed and readily synthesized from the low-cost biomolecule adenine. Accordingly, three new MOFs (TJU-103, TJU-104 and TJU-105) were prepared using the Co(II) or Mn(II) ions as metal nodes. Through rationally controlling pyrolysis condition, in virtue of the high nitrogen content in well-defined periodic structure of the pristine MOFs, TJU-104–900 among the derived MOFs with hierarchical porous structure, i.e., N-doped graphitic carbon encapsulating homogeneously distributed cobalt nanoparticles, could be conveniently obtained. Thanks to the synergistic effect of the hierarchical structure and well dispersed active components (i.e., C=O, Co‒Nx, graphitic C and N, pyridinic N), it could exhibit an overpotential of 280 mV@10 mA/cm2 on carbon cloth for OER activity. This work provides the inspiration for fabrication of nitrogen-doped carbon/metal electrocatalysts from cost-effective and abundant biomolecules, which is promising for practical OER application.  相似文献   

6.
NiCo2O4 nanorods were synthesized by a hydrothermal method followed by low temperature calcination. FESEM and TEM analyses confirmed that the as-prepared materials consist of a hierarchical nanorod structure. When applied as cathode catalysts in rechargeable Li–O2 batteries, NiCo2O4 nanorods exhibited a superior catalytic activity, including low charge over-potential, high discharge capacity and high-rate capability.  相似文献   

7.
NiO/multiwalled carbon nanotube (NiO/MWCNT) nanocomposites have been prepared and used for a Li–O2 battery cathode catalyst. Electrochemical measurements demonstrate that the batteries with NiO/MWCNT catalyst have a discharge capacity of 2,500 mAh g?1, a charge capacity of 2,100 mAh g?1, and a rechargeable ability performing better than Ketjenblack (KB) and MWCNTs. KB has the largest discharge capacity (2,700 mAh g?1) due to the highest surface area and pore volume but the worst charging behavior due to poor mass transport in the small-width pore (2.48 nm). MWCNTs have a much better charging performance owing to a larger pore width (8.93 nm) than carbon black. NiO/MWCNTs have the largest charge capacity because of the facilitated mass transport in the comparatively large pores (7.68 nm) and the increased catalytic ability produced by the NiO nanoparticles. These improvements are also responsible for the best cycle and rate performances of the nanocomposites among the three catalysts.  相似文献   

8.
The electrochemical behavior of Cobalt-free LaNi3.55Mn0.4Al0.3Co0.4Fe0.35 alloy electrode in alkaline solution was investigated using electrochemical impedance spectroscopy (EIS) at different number of charge/discharge cycles. A physicochemical model is developed in order to simulate impedance data. Kinetic parameters are obtained by fitting the electrochemical impedance spectrum performed at different number of cycles. The charge-transfer resistance decreases with increasing number of charge/discharge of cycles, whereas exchange current density and hydrogen diffusion coefficient parameters increase with increasing number of cycles. In addition, the specific surface area of LaNi3.55Mn0.4Al0.3Co0.4Fe0.35 alloy electrode increases due to pulverization and the formation of new active sites during charge/discharge cycling. The results of EIS measurements indicate that the performance of the LaNi3.55Mn0.4Al0.3Co0.4Fe0.35 metal hydride electrode was markedly improved with increasing number of cycles which is mainly attributed to the increase in the reaction surface area and the improvement in the electrode surface activation.  相似文献   

9.
NiCo2O4 nanosheets supported on Ni foam were synthesized by a solvothermal method. A composite of NiCo2O4 nanosheets/Ni as a carbon-free and binder-free air cathode exhibited an initial discharge capacity of 1762 mAh g 1 with a low polarization of 0.96 V at 20 mA g 1 for sodium–air batteries. Na2O2 nanosheets were firstly observed as the discharged product in sodium–air battery. High electrocatalytic activity of NiCo2O4 nanosheets/Ni made it a promising air electrode for rechargeable sodium–air batteries.  相似文献   

10.
Nanostructured Fe2O3–graphene composite was successfully fabricated through a facile solution-based route under mild hydrothermal conditions. Well-crystalline Fe2O3 nanoparticles with 30–60?nm in size are highly encapsulated in graphene nanosheet matrix, as demonstrated by various characterization techniques. As electrode materials for supercapacitors, the as-obtained Fe2O3–graphene nanocomposite exhibits large specific capacitance (151.8?F?g?1 at 1?A?g?1), good rate capability (120?F?g?1 at 6?A?g?1), and excellent cyclability. The significantly enhanced electrochemical performance compared with pure graphene and Fe2O3 nanoparticles may be attributed to the positive synergetic effect between Fe2O3 and graphene. In virtue of their superior electrochemical performance, they will be promising electrode materials for high-performance supercapacitors applications.  相似文献   

11.
Journal of Solid State Electrochemistry - In this work, nanorods like bimetallic Zn/Mn metal–organic-frameworks (MOFs) are proposed as the precursor for preparing MnxOy/porous carbon...  相似文献   

12.
《中国化学快报》2023,34(7):107815
Mesoporous carbon supported with transition metals nanoparticles performs desired activities for oxygen reduction reaction (ORR) and clean energy conversion devices such as Zn–air batteries. In this work, we synthesized N-doped mesoporous carbon loaded with cobalt nanoparticles (CoMCN) through self-assembly method. There are sufficient mesopores on the carbon substrate which stem from the pore-forming agent. These mesopores can provide enough accessible active sites and profitable charge/mass transport for ORR. The high content of pyridinic and graphitic N is beneficial for promoting O2 adsorption and reduction. The smaller value of ID/IG indicates the higher degree of graphitization of CoMCN, providing better electronic conductivity. The half-wave potential of CoMCN is 0.865 V in basic solution, which is 24 mV more positive than that of the commercial Pt/C (0.841 V). In addition, CoMCN performs excellent methanol tolerance and stability under both basic and acidic conditions. The Zn–air battery assembled with CoMCN performs the larger power density and open-circuit voltage than the commercial Pt/C-based battery, indicating the potential application in energy conversion systems. This work provides thoughtful ideas for fabricating transition metal nanoparticles based porous carbon for electrocatalysis and metal–air batteries.  相似文献   

13.
14.
Ti-based anode materials with the nominal compositions Li4Ti5CuxO12 + x (x = 0, 0.075, 0.15, 0.3, 0.6, 1.20 and 1.67) were synthesized at 800 °C by a solid-state reaction process. X-ray diffraction analysis indicated that the sintered samples were composed of intergrown spinel-type Li4Ti5O12 and Li2CuTi3O8, and a small amount of Li2O. Scanning electron microscopy, electrical resistance measurement and galvanostatic cell cycling were also employed to characterize the structure and properties of the double spinel samples. It is proposed that the first lithiation of the component Li2CuTi3O8 leads to the in situ production of Cu that can significantly improve the rate performance of Li4Ti5CuxO12 + x. The optimal nominal composition is Li4Ti5Cu0.15O12.15.  相似文献   

15.
Zeng  Xuecen  Zhang  Xuejing  Liu  Shuang  Yang  Hao  Tao  Zhanliang  Liang  Jing 《中国科学:化学(英文版)》2019,62(6):727-731
The γ-MnO_2@CNT catalyst was prepared by in situ solid phase synthesis and first applied into sodium-air batteries(SABs). The initial discharge specific capacity of SABs with γ-MnO_2@CNT catalyst can reach 8804 mA h g~(-1) and the overpotential gap is only 140 m V, which is better than the batteries that is catalyzed by α-MnO_2@CNT and pure CNT. Besides, the batteries also exhibit excellent cycle performance, which can keep relatively stable for 246 cycles at 500 mA g~(-1) and 140 cycles at1000 mA g~(-1).  相似文献   

16.
Flexible zinc–air batteries attract more attention due to their high energy density, safety, environmental protection, and low cost. However, the traditional aqueous electrolyte has the disadvantages of leakage and water evaporation, which cannot meet application demand of flexible zinc–air batteries. Hydrogels possessing good conductivity and mechanical properties become a candidate as the electrolytes of flexible zinc–air batteries. In this work, advances in aspects of conductivity, mechanical toughness, environmental adaptability, and interfacial compatibility of hydrogel electrolytes for flexible zinc–air batteries are investigated. First, the additives to improve conductivity of hydrogel electrolytes are summarized. Second, the measures to enhance the mechanical properties of hydrogels are taken by way of structure optimization and composition modification. Third, the environmental adaptability of hydrogel electrolytes is listed in terms of temperature, humidity, and air composition. Fourth, the compatibility of electrolyte–electrode interface is discussed from physical properties of hydrogels. Finally, the prospect for development and application of hydrogels is put forward.  相似文献   

17.
Inexpensive and abundant sodium resources make energy storage systems using sodium chemistry promising replacements for typical lithium-ion rechargeable batteries(LIBs).Fortuitously,aqueous sodium-ion rechargeable batteries(ASIBs),which operate in aqueous electrolytes,are cheaper,safer,and more ionically conductive than batteries that operate in conventional organic electrolytes;furthermore,they are suitable for grid-scale energy storage applications.As electrode materials for storing Na~+ ions in ASIBs,a variety of multifunctional metal-organic frameworks(MOFs) have demonstrated great potential in terms of having porous 3 D crystal structures,compatibility with aqueous solutions,long cycle lives(≥1000 cycles),and ease of synthesis.The present review describes MOF-derived technologies for the successful application of MOFs to ASIBs and suggests future challenges in this area of research based on the current understanding.  相似文献   

18.
Using the anion receptor tris(penftafluorophenyl) borane as an additive to non-aqueous electrolytes, the solubility of solid Li2O2 can be dramatically increased through the Lewis acid–base interaction between boron and peroxide. The complexed boron-peroxide ions can be electrochemically oxidized with much better kinetics than the oxidation of solid Li2O2 on a carbon powder microelectrode. This discovery could lead to a new avenue for the development of high capacity, high rate, rechargeable, Li–Air batteries.  相似文献   

19.
We report a Cu-based metal–organic framework (MOF) decorated by CuO nanostructures as an efficient catalyst for the oxygen evolution reaction (OER). MIL-53(Cu) was synthesized by a hydrothermal approach using 1,4-bezenedicarboxylic acid as organic precursor and further annealed at 300°C to form CuO nanostructures on its surface. The produced electrocatalyst, CuO@MIL-53(Cu), was characterized using various techniques. Under alkaline conditions, the developed electrocatalyst exhibited an overpotential of 801 and 336 mV versus RHE at 10 and 1 mA cm−2, respectively. The reproducibility of the catalytic performance was validated using several electrodes. It was confirmed that the CuO hair-like nanostructures grown on MIL-53(Cu) using thermal treatment exhibit high OER activity, good kinetics and durability. CuO@MIL-53(Cu) is an economic noble-metal-free OER electrocatalyst. It has potential for application as anode material for sustainable energy technologies like batteries, fuel cells and water electrolysis.  相似文献   

20.
Ammonium metavanadate (10 tool%) was found to be a useful catalyst for the synthesis of various 2-substituted aryl benzimidazoles. It was used as an oxidizing agent for the condensation of o-pbenylenediamine with different substituted aryl aldehydes at room temperature in ethanol. The method was proved to be simple, convenient and the product was isolated with good yields (79-91%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号