首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnS-polyacrylic acid (ZnS-PAA) was prepared by an in situ polymerization method using nano-ZnS as core in the presence of acrylic acid (AA), and ZnS-PAA nanoparticles was characterized by ultraviolet spectrometry (UV) and transmission electron microscopy (TEM). Based on the significant increase of the resonance light scattering (RLS) intensity with the interaction between nanoparticles and serum albumin, RLS method was developed for the sensitive determination of serum albumin (BSA and HSA). Under optimum conditions, the change of the intensity (ΔI) of the RLS spectra at λ = 392 nm was linearly proportional to the concentration of BSA and HSA. The linear range was 1–100 ng mL?1 for HSA and 1–120 ng mL?1 for BSA, and the limit of detection (LOD) was 0.4 ng mL?1 for HSA and 0.5 ng mL?1 for BSA. This method proved to be very sensitive, rapid, simple and tolerant of most interfering substances.  相似文献   

2.
A new and simple direct precipitation method assisted with ultrasonic agitation was proposed for the preparation of spherical ZnO nanoparticles. The size of the ZnO nanoparticles, 10 nm to 85 nm, was tuned through controlling the calcination temperature and changing the ratio of the reactants. The resonant light scattering (RLS) of the ZnO nanoparticles dispersed/suspended in aqueous solution of Triton X-100 was studied under room temperature. It was found that the ZnO nanoparticles of different size or concentration all have a characteristic RLS peak at 387 nm. Under optimal conditions, the RLS intensity was proportional to the ZnO concentration in the range of 7.3 × 10?8–1 × 10?4 mol L?1, while the cubic root of the RLS intensity was found to be proportional to the size of ZnO nanoparticles. Further, the quantitative relationship of the size of the ZnO nanoparticles versus the calcination temperature was derived, and this could be used to forecast/control the nano-size in the nano-ZnO preparation.  相似文献   

3.
The efficiency of a pre-absorbed bovine serum albumin (BSA) layer in blocking the non-specific adsorption of different proteins on hydrophobic and hydrophilic surfaces was evaluated qualitatively and quantitatively using infrared reflection spectroscopy supported by spectral simulations. A BSA layer with a surface coverage of 35% of a close-packed monolayer exhibited a blocking efficiency of 90–100% on a hydrophobic and 68–100% on a hydrophilic surface, with respect to the non-specific adsorption of concanavalin A (Con A), immunoglobulin G (IgG), and staphylococcal protein A (SpA). This BSA layer was produced using a solution concentration of 1 mg/mL and 30 min incubation time. BSA layers that were adsorbed at conditions commonly employed for blocking (a 12 h incubation time and a solution concentration of 10 mg/mL) exhibited a blocking activity that involved competitive adsorption–desorption. This activity resulted from the formation of BSA–phosphate surface complexes, which correlated with the conformation of adsorbed BSA molecules that was favourable for blocking. The importance of optimisation of the adsorbed BSA layer for different surfaces and proteins to achieve efficient blocking was addressed in this study.  相似文献   

4.
Porous composite films containing cellulose nanofibrils (from sisal) and TiO2 nanoparticles (ca. 6 nm diameter) are obtained in a layer-by-layer assembly process. Each layer consists of ca. 0.18 μg cellulose nanofibrils and ca. 0.72 μg TiO2 (determined by QCMB) and adds a thickness of ca. 16 nm (by AFM) to the uniform deposit. The TiO2 nanophase is creating conducting pathways for electrons in a relatively open cellulose structure (ca. 82% open pores) potentially suitable for the immobilization of large redox proteins such as methemoglobin.Methemoglobin is shown to readily adsorb into the cellulose–TiO2 film. However, electrochemical responses for the immobilized methemoglobin in aqueous 0.1 M phosphate buffer at pH 5.5 suggest that facile demetallation occurs. Experiments with Fe3+ in the absence of protein result in voltammetric responses indistinguishable from those observed for immobilized methemoglobin. In the presence of ethylenediamine tetraacetic acid (EDTA) the voltammetric signals for the Fe3+ immediately disappear. Complementary experiments conducted in 0.1 M acetate buffer at pH 5.5 demonstrate that methemoglobin can indeed be immobilized in electrochemically active form and without demetallation loss of the voltammetric signal in the presence of EDTA. Demetallation appears to occur (i) in the presence of phosphate, (ii) at pH 5.5, (iii) and in the presence of a charged surface.  相似文献   

5.
Pulse radiolytic reduction of bovine serum albumin (BSA) and lysozyme by CO2 radical in presence of polyvinyl alcohol (PVA) has been studied. At pH 6.8 in presence of 2% (w/v) PVA, reduction of BSA and lysozyme (both at 1×10−4 mol dm−3) give an additional transient peak at 390 nm along with the usual 420 nm peak. The bimolecular rate constants for the reaction of CO2 radical at pH 6.8±0.2 with BSA are 2.7×108 and 7.13×108 dm3 mol−1 s−1 at 420 nm and 390 nm respectively. The same for lysozyme are 3.2×108 and 5.6×108 dm3 mol−1 s−1 at 420 nm and 390 nm, respectively. Dimethyl disulfide also gives 390 nm and 420 nm peaks in this system upon reduction with CO2 radical. The 390 nm peak is ascribed to the sulfenium radical (RSS(H)R). Studies on the variation of pH suggests the protonation of RSSR radical (420 nm) to form RSS(H)R radical (390 nm) in this viscous media. The decay of RSS(H)R radical occurs via formation of RS radical and RS(H)S(H)R, the final product being RSH in both cases.  相似文献   

6.
Ultrafiltration of either single protein solutions (lysozyme 14,300 g mol−1, pI=11; lactoferrin 80,000 g mol−1, pI=8–9) or mixed protein solution was performed with inorganic membranes (MMCO 300,000 g mol−1, pore radius 14 nm) chemically modified in order to bear either pyrophosphate (PP, anionic) or ethylenediamine (EDA, cationic) groups.The electrophoretic mobility of modified and unmodified zirconia particles fouled with proteins was similar whatever the grafted groups, meaning that the membrane surface was always made of adsorbed proteins during UF. In spite of that, for the UF of lysozyme/lactoferrin mixed solution, the maximum selectivity (S=lysozyme transmission/lactoferrin transmission=165) was observed with the EDA membrane and allowed an instantaneous purity of lysozyme in the permeate close to 100% to be achieved. Such high selectivitiy was mainly due to the negligible transmission of lactoferrin with the membrane modified with the EDA groups in the ionic strength range 0–100 mmol l−1 of NaCl at pH 7 (achieved either for mixed and single solutions).  相似文献   

7.
Hyaluronic acid (HYH) films were prepared from aqueous sodium hyaluronate (HYNa) solutions by anodic electrodeposition. The film thickness was varied in the range of 0–20 μm by the variation of the deposition time and HYNa concentration. The deposition rate was low at HYNa concentration below 1 g L−1 and increased significantly in the range of 3–5 g L−1. The addition of bovine serum albumin (BSA) to the HYNa solutions resulted in increased deposition yield, which was attributed to the formation of composite HYH–BSA films. The thickness of the HYH–BSA films deposited by anodic electrodeposition was varied in the range of 0–80 μm. The HYH and composite HYH–BSA films were studied by scanning electron microscopy, thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy and circular dichroism spectroscopy. The deposition mechanism and kinetics of deposition are discussed.  相似文献   

8.
The interaction between 3,3-bis(4-hydroxy-1-naphthyl)-phthalide (NPP) and bovine serum albumin (BSA) have been studied by fluorescence spectroscopy. The binding of NPP quenches the BSA fluorescence. By the fluorescence quenching results, it was found that the binding constant K = 5.30 × 104 L mol−1, and number of binding sites n = 0.9267. In addition, according to the synchronous fluorescence spectra of BSA, the results showed that the fluorescence spectra of BSA mainly originate from the tryptophan residues. Finally, the distance between the acceptor NPP and BSA was estimated to be 1.94 nm using Föster's equation on the basis of fluorescence energy transfer. The interaction between NPP and BSA has been verified as consistent with the static quenching procedure and the quenching mechanism is related to the energy transfer.  相似文献   

9.
A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 × 107 to 2.03 × 108 molecules per capsule with decrease in pH from 4.5 to 3. The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides.  相似文献   

10.
In 0.2 mol/L HCl–0.22 mol/L HNO3 medium, trace Hg2+ catalyzed NaH2PO2 reduction of HAuCl4 to form gold nanoparticles (AuNPs), which exhibited a strong resonance Rayleigh scattering (RRS) effect at 370 nm. With increasing of [Hg2+], the RRS effect enhanced due to more AuNP generated from the catalytic reaction. Under the chosen conditions, the enhanced RRS intensity at 370 nm is linear to Hg2+ concentration in the range of 5.0–450 × 10−9 mol/L, with a detection limit of 0.1 nmol/L. This RRS method was applied for the determination of Hg in water samples, with high sensitivity and good selectivity, and its results were agreement with that of atomic fluorescence spectrometry.  相似文献   

11.
In this work, polyvinyl alcohol (PVA) protected silver grass-like nanostructure (PVA–Ag–GNS) with near infrared surface-enhanced Raman scattering (NIR-SERS) activity was prepared and employed to detect DNA and DNA bases. The PVA–Ag–GNS demonstrated high NIR-SERS activity and good optical reproducibility in the detection of adsorbates such as the case of crystal violet, DNA and DNA bases. By using of the tested molecule of thymine, the PVA–Ag–GNS shows a high enhancement factor (EF) of ∼108. For NIR-SERS detection of DNA molecules, Raman signals from the DNA bases of guanine (630 cm−1) and adenine (720 cm−1) are greatly enhanced. For DNA molecules NIR-SERS detection, Raman signals from the DNA bases of guanine (630 cm−1), adenine (720 cm−1) and cytosine (1010 cm−1) are greatly enhanced. The experimental results show that the NIR-SERS spectrum of DNA is dominated by guanine mode, which is followed by adenine and cytosine modes, respectively. Meanwhile, the NIR-SERS signal intensities of the DNA bases increase in the order of thymine (T) < cytosine (C) < adenine (A) < guanine (G). One can conclude that the adsorption strength of the DNA bases in DNA molecule with the silver surface is in the order T < C < A < G, which is different from that of the four DNA bases in individual molecule adsorbed on silver surface (T < A < G < C). On the other hand, the geometry optimization and calculated wavenumber of the complexes of adenine–Ag, guanine–Ag, cytosine–Ag and thymine–Ag for the ground states are performed with DFT, B3LYP functional and the LanL2DZ basis set. The calculated wavenumbers match well with the experimental results. According to our experiment and calculations, DNA base molecules adsorbed on silver surface via the intra-annular nitrogen atom which is adsorbed on the silver nanoparticle and formed metal–molecule complexes by the available lone pair.  相似文献   

12.
The toxic interaction of the azo dye-chrysoidine hydrochloride combined with cetyltrimethyl ammonium bromide (CTMAB) in living tissue was studied in vitro. The absorption spectrum, resonance light scattering (RLS), circular dichroism (CD) and transmission electron microscopy (TEM) results showed that the toxicity of chrysoidine hydrochloride itself to calf thymus DNA (ct-DNA) is weak, while the chrysoidine hydrochloride–CTMAB combined pollution showed obvious toxic interaction with ct-DNA. The chrysoidine hydrochloride–CTMAB combined contamination can interact with ct-DNA to form an ion-associated complex through electrostatic and hydrophobic forces. The conformation of DNA was changed in the interaction process to show toxic. The experimental results showed that the combination of chrysoidine hydrochloride–CTMAB has higher toxicity to ct-DNA than either chrysoidine hydrochloride or CTMAB individually, and the combined pollution showed a strong toxic co-effect at a dose of 3.0 × 10?4 mol L?1 chrysoidine hydrochloride and 1.6 × 10?5 mol L?1 CTMAB.  相似文献   

13.
A three-step infrared (IR) macro-fingerprint method combining conventional IR spectra, and the secondary derivative spectra with two-dimensional infrared correlation spectroscopy (2D-IR), was developed to analyze Spirulina powder before and after gamma irradiation. In the IR spectra, most of the absorption peaks of samples irradiated at 1, 2.7, 6, and 10.4 kGy had lower intensities than the non-irradiated ones, whereas peaks at 1152, 1078, and 1051 cm−1 were slightly enhanced with irradiation at 2.7, 6, and 10.4 kGy. Their second derivative spectra amplified the differences and revealed that irradiation affected the C=O band of carboxylic acid and esters, and the N–H band of proteins. The peaks at 1746 and 1741 cm−1, and those at 1730 and 1725  cm−1 became two broad peaks. Meanwhile, the three sharp peaks at 1548 cm−1, 1544 cm−1 and 1536 cm−1 changed to two broad peaks at around 1547 and 1534 cm−1 after irradiation at doses higher than 1 kGy. The characteristic IR bands from 1700 cm−1 to 1600 cm−1, which represent the C=O band in proteins, also have different shapes and intensities after irradiation. The finding indicated that irradiation affected the secondary structures of protein which was confirmed by curve fitting results. During the process of increasing the temperature from 50 to 210 °C, the ratio of amide I to II in absorption intensities in the 2D-IR spectra of the irradiated samples varied with different response for different samples. Saccharides in Spirulina powder had a higher thermostability than proteins, but the autopeaks of irradiated samples did show differences from the non-irradiated sample. The intensity of autopeaks at 1012 cm−1 increased dramatically in the irradiated samples while that of peaks at 1053, 1071, and 1083 cm−1 decreased after irradiation. Based on the three-step IR macro-fingerprint method, irradiated Spirulina powder samples were successfully and fast identified and discriminated.  相似文献   

14.
The development of UV and fluorescence spectrophotometric methods for the quantitative determination of alprazolam in dosage forms using As(III)?SDS system. The two simple and sensitive, spectrophotometric and spectrofluorimetric methods were developed for the determination of alprazolam (ALP) in tablets. These methods are based on formation of ALP?As(III) complex in the presence of SDS. The UV-spectrum of 30% methanolic solution of ALP (5 × 10?5 M) at pH 6.5 (Mclivaine buffer) was run between 200 and 380 nm. The absorption spectrum of ALP exhibits two peaks with a λmax. at 255 nm and a weak band at 325 nm. When the spectra of the drug were run at varying pH in the region 200–380 nm, one isosbestic point at 290 nm was observed, which indicated the presence of two ionic conditions in solution. The complex exhibited an absorption maximum at 265 nm and emission peak at 520 nm with respect to the excitation wavelength of 325 nm. The spectrophotometric method was found to be linear in 8.0–17.0 μg ml?1 range with detection limit of 13.520 μg ml?1, while 0.05–9.5 μg ml?1 range was with detection limit of 1.048 × 10?2 μg ml?1 by spectrofluorimetric method. The mean percentage recovery of the added quantity was found to be 99.54 (spectrophotometric method) and 100.22 (spectrofluorimetric method) and the %RSD are lower than 0.478 and 0.296 determined spectrophotomerically and spectrofluorimtrically, respectively. This indicates that the proposed method is accurate. The apparent ionization constant of ALP was found to be 9.29. The spectra, experimental conditions were set followed by determination stoichiometry, stability constant and thermodynamic parameters of the As(III), Co(II), Ni(II), and Zn(II) complexes with ALP at pH 6.5. The proposed methods have been successfully applied to the assay of ALP in tablets and the results were statistically evaluated.  相似文献   

15.
The carbon fibrous mats with high conductivity (50 S cm−1) formed by carbon nanofibers with an average diameter of ∼150 nm have been fabricated by thermally treating the electrospun polyacrylonitrile fibers. The platinum clusters are electrodeposited on the carbon nanofibrous mats (CFMs) by multi-cycle CV method. In contrast to the catalytic peak current of methanol oxidation on commercial catalyst (185 mA mg−1 Pt), the catalytic peak current on optimum Pt/CFM electrode reaches to ∼420 mA mg−1 Pt despite of the large size (50–200 nm) of the Pt clusters, revealing that the special structure of carbon fibrous mats is favorable to improve the performance of catalyst.  相似文献   

16.
The luminescent characteristics of RE (RE3+ = Eu, Tb, Dy, Sm and Tm)-doped K2GdZr(PO4)3 have been investigated. The band in the range of 130–157 nm in the VUV excitation spectra of these compounds is attributed to the host lattice or PO43? group absorption and the band from 157 nm to 215 nm with the maximum at 188 nm is due to the O–Zr charge transfer transition. For Eu3+-doped sample, the relatively weak band of O2?–Eu3+ charge transfer (CTB) at 222 nm is observed and for Tb3+-doped sample, the band at 223 nm is related to the 4f–5d spin-allowed transition of Tb3+. For Dy3+- and Sm3+-doped samples, the O2?–Dy3+ and O2?–Sm3+ CTBs have not been observed, probably due to the 2p electrons of oxygen tightly bound to the zirconium ion in the host lattice. In Tm3+-doped sample, the weak O2?–Tm3+ CTB is located at 170 nm. It is observed that there is energy transfer between the host and the luminescent activators (e.g. Eu3+, Tb3+ and Sm3+) except for Tm3+.  相似文献   

17.
This work points out that electrogeneration of silica gel (SG) films on glassy carbon electrodes (GCEs) can be applied to immobilize biomolecules – hemoglobin (Hb) or glucose oxidase (GOD) or both of them in mixture – without preventing their activity. These proteins were physically entrapped in the sol–gel material in the course of the electro-assisted deposition process applied to form the thin films onto the electrode surface. SG films were prepared from a precursor solution by applying a suitable cathodic potential likely to induce a local pH increase at the electrode/solution interface, accelerating thereby polycondensation of the silica precursors with concomitant film formation. Successful immobilization of proteins was checked by various physico-chemical techniques. Both Hb and GOD were found to undergo direct electron transfer, as demonstrated by cyclic voltammetry. GCE–SG–Hb gave rise to well-defined peaks at potentials Ec = −0.29 V and Ea = −0.17 V in acetate buffer, corresponding to the FeIII/FeII redox system of heme group of the protein, while GCE–SG–GOD was characterized by the typical signals of FAD group at Ec = −0.41 V and Ea = −0.33 V in phosphate buffer. These two redox processes were also evidenced on a single voltammogram when both Hb and GOD were present together in the same SG film. Hb entrapped in the silica thin film displayed an electrocatalytic behavior towards O2 and H2O2 in solution, respectively in the mM and μM concentration ranges. Immobilized GOD kept its biocatalytic properties towards glucose. Combined use of these two proteins in mixture has proven to be promising for detection of glucose in solution via the electrochemical monitoring of oxygen consumption (decrease of the oxygen electrocatalytic signal).  相似文献   

18.
Cibacron Blue F3GA, Procion Red HE-3B and Procion Blue MX-R were immobilized on macroporous chitosan and chitin membranes with concentrations as high as 10–200 μmol/ml membrane. These dyed membranes were chemically and mechanically stable, could be reproducibly prepared, and operated at high flow rates. Human serum albumin (HSA) and bovine serum albumin (BSA) were selected as model proteins, and their adsorption on and desorption from the dyed chitosan membranes investigated. The Cibacron Blue F3GA membranes had a higher protein adsorption capacity, much greater for HSA than BSA, than the other dyed membranes. About 8.4 mg HSA/ml membrane were adsorbed at saturation by Cibacron Blue F3GA–chitosan membranes from a 0.05 M Tris–HCl/0.05 M NaCl, pH 8 solution. The chitin membranes had a lower dye content and hence a lower protein adsorption capacity than the chitosan membranes. The effects of important operation parameters (flow rate, protein concentration and loading) were also investigated. Cibacron Blue F3GA–chitosan membranes were employed for the separation of HSA from human plasma and high purity HSA thus obtained. This suggests that these membranes could be used for large-scale plasma fractionation.  相似文献   

19.
Three simple, accurate and sensitive methods (A–C) for the spectrophotometric assay of captopril (CPL) in bulk drug, in dosage forms and in the presence of its oxidative degradates have been described. The methods are based on the bromination of captopril with a solution of excess brominating mixture in hydrochloric acid medium. After bromination, the excess brominating mixture is followed by the estimation of surplus bromine by three different reaction schemes. In the first method (A), the determination of the residual bromine is based on its ability to bleach the indigo carmine dye and measuring the absorbance at 610 nm. Method B, involves treating the unreacted bromine with a measured excess of iron(II) and the remaining iron(II) is complexed with 1,10-phenanthroline and the increase in absorbance is measured at 510 nm. In method (C), the surplus bromine is treated with excess of iron(II) and the resulting iron(III) is complexed with thiocyanate and the absorbance is measured at 478 nm. In all the methods, the amount of bromine reacted corresponds to the drug content. The different experimental parameters affecting the development and stability of the color are carefully studied and optimized. Beer's law is valid within a concentration range of 0.4–6.0, 0.4–2.8 and 1.2–4.8 μg mL?1 for methods A, B and C, respectively. The calculated apparent molar absorptivity was found to be 5.16 × 104, 9.95 × 104 and 1.74 × 105 L mol?1 cm?1, for methods A, B and C, respectively. Sandell's sensitivity, correlation coefficients, detection and quantification limits are also reported. No interference was observed from common additives found in pharmaceutical preparations. The proposed methods are successfully applied to the determination of CPL in the tablet formulations with mean recoveries of 99.94–100.11% and the results were statistically compared with those of a reference method by applying Student's t- and F-test.  相似文献   

20.
A simple electrochemical method for the determination of association constants between carbohydrates and carbohydrate-binding proteins using cyclic voltammetry (CV) is described. The binding of concanavalin A (Con A) and cholera toxin (CT) to their specific α-mannose and β-galactose derivatives self-assembled on gold electrodes is electrochemically monitored with a redox probe of K3Fe(CN)6/K4Fe(CN)6. Upon binding of the proteins to the carbohydrate-modified electrodes, the redox current in CV decreases. The binding-induced change in electrochemical signal is thus used to construct Langmuir adsorption isotherm for the carbohydrate–protein interactions and to obtain the association constants. The association constants of carbohydrate–protein interactions determined by CV ((5.8 ± 1.2) × 107 M 1 for mannose–Con A, (2.6 ± 0.5) × 108 M 1 for galactose-CT) were in good agreement with those measured with electrochemical impedance spectroscopy and quartz crystal microbalance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号