首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cobalt-free cubic perovskite oxide, SrFe0.9Nb0.1O3?δ (SFN) was investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results showed that SFN cathode was chemically compatible with the electrolyte Sm0.2Ce0.8O1.9 (SDC) for temperatures up to 1050 °C. The electrical conductivity of SFN sample reached 34–70 S cm?1 in the commonly operated temperatures of IT-SOFCs (600–800 °C). The area specific resistance was 0.138 Ω cm2 for SFN cathode on SDC electrolyte at 750 °C. A maximum power density of 407 mW cm?2 was obtained at 800 °C for single-cell with 300 μm thick SDC electrolyte and SFN cathode.  相似文献   

2.
A novel single phase BaCe0.5Bi0.5O3 ? δ (BCB) was employed as a cathode material for a proton-conducting solid oxide fuel cell (SOFC). The single cell, consisting of a BaZr0.1Ce0.7Y0.2O3 ? δ (BZCY7)-NiO anode substrate, a BZCY7 anode functional layer, a BZCY7 electrolyte membrane and a BCB cathode layer, was assembled and tested from 600 to 700 °C with humidified hydrogen (~3% H2O) as the fuel and the static air as the oxidant. An open-circuit potential of 0.96 V and a maximum power density of 321 mW cm?2 were obtained for the single cell. A relatively low interfacial polarization resistance of 0.28Ω cm2 at 700 °C indicated that the BCB was a promising cathode material for proton-conducting SOFCs.  相似文献   

3.
A cathode-supported electrolyte film was fabricated by tape casting and co-sintering techniques. (La0.8Sr0.2)0.95MnO3 (LSM95), LSM95/Zr0.89Sc0.1Ce0.01O2?x (SSZ), and SSZ were used as materials of cathode substrate, cathode active layer, and electrolyte, respectively. CuO–NiO–SSZ composite anode was deposited on SSZ surface by screen-printing and sintered at 1250 °C for 2 h. The effects of CuO addition to NiO–SSZ anode on the performance of cathode-supported SOFCs were investigated. CuO can effectively improve the sintering activity of NiO–SSZ. The assembled cells were electrochemically characterized with humidified H2 as fuel and O2 as oxidant. With 4 wt.% CuO addition, the ohmic resistance decreased from 3 to 0.46 Ω cm2, and at the same time the polarization resistance decreased from 3.4 to 0.74 Ω cm2. In comparison with the cell without CuO, the maximum power density at 850 °C increased from 0.054 to 0.446 W cm?2 with 4 wt.% CuO addition.  相似文献   

4.
A phase inversion process was used to co-extrude cerium–gadolinium oxide (Ce0.9Gd0.1O1.95)/NiO–CGO dual-layer hollow fibres (HF), which were then sintered to form, respectively, the electrolyte and high porosity anode precursor of a solid oxide fuel cell (SOFC) with anode inner diameter of 0.8 mm. Graded CGO–lanthanum strontium cobalt ferrite (La0.6Sr0.4Fe0.8Co0.2O3) cathode layers were then painted onto the CGO electrolyte to form a micro-tubular HF-SOFC. With a carefully designed anode current collector, this produced maximum power densities of 1186–5864 W m? 2 at 450–570 °C. High magnification imaging analysis revealed large three-phase boundary regions within the anode, a dense electrolyte layer and clearly highlighted the multiple CGO–LSCF cermet and pure LSCF cathode layers. The performance of the HF-SOFC with a twenty millimetre active length showed no degradation after four thermal cycles between 300 °C and 570 °C.  相似文献   

5.
The thin membrane of BaCe0.8Sm0.2O3−δ (BCS) with high quality was successfully fabricated on porous NiO–BCS anode substrate through a novel in situ reaction method. The key part of this method is to directly spray well-mixed suspension of BaCO3, CeO2 and Sm2O3 instead of pre-synthesized BCS ceramic powder on the anode substrate. After sintering at 1400 °C for 5 h, the extremely dense electrolyte membrane in the thickness of 10 μm is obtained. A single cell was assembled with La0.7Sr0.3FeO3−σ as cathode and tested with humidified hydrogen as fuel at 650 °C. The open circuit voltage (OCV) and maximum power density respectively reach 1.04 V and 535 mW/cm2. Interface resistance of cell under open circuit condition was also investigated.  相似文献   

6.
A series of ceria-based composite materials consisting of samaria doped ceria (SDC) and binary carbonates(Li2CO3–Na2CO3) were examined as functional electrolytes for low-temperature solid oxide fuel cells (SOFCs). DTA and SEM techniques were applied to characterize the phase- and micro-structural properties of the composite materials. Conductivity measurements were carried on the composite electrolytes with a.c. impedance in air. A transition of ionic conductivity with temperature was occurred among all samples with different carbonate content, which related to the interface phase. Single cells based on the composite electrolytes, NiO as anode and lithiated NiO as cathode, were fabricated by a simple dry-pressing process and tested at 400–600 °C. The maximum output power at 600 °C increased with the carbonate content in the composite electrolytes, and reached the maximum at 25 wt.%, then decreased. Similar trend has also shown at 500 °C, but the maximum was obtained at 20wt.%. The best performances of 1085 mW cm−2 at 600 °C and 690 mW cm−2 at 500 °C were achieved for the composite electrolytes containing 25 and 20 wt.% carbonates, respectively. During fuel cell operation, it found that the SDC-carbonate composites are co-ionic (O2−/H+) conductors. At lower carbonate contents, both oxide–ion and proton conductions were significant, when the content increased to 20–35 wt.%, proton conduction dominated. The detailed conduction mechanism in these composites needs further investigation.  相似文献   

7.
Preliminary progress is reported in this communication in building a planar anode-supported low-temperature solid oxide fuel cell (SOFC) stack based on gadolinia-doped ceria (GDC) electrolyte, i.e. fabrication and characterization of a Ø80 planar bilayer structure composed of GDC electrolyte film and Ni–GDC anode substrate. The anode substrates were prepared from mixtures of NiO, GDC, and carbon black by die-pressing. After pre-firing to remove the carbon black, the anode substrates were deposited with a GDC layer using a spray coating technique. The green bilayers of anode substrate and electrolyte film were then co-sintered at 1500 °C for 3 h. Through proper control of the sintering process, bilayer structures with excellent flatness were achieved after co-sintering. Scanning electron microscopy (SEM) observation indicated that the electrolyte film was about 22 μm in thickness, highly dense, crack-free, and well-bonded to the anode substrate. Small disks which were cut out from the Ø80 bilayer structure were electrochemically examined in a single button-cell mode incorporating a (LaSr)(CoFe)O3–GDC composite cathode. With humidified hydrogen as the fuel and air as the oxidant, the cell demonstrated an open-circuit voltage of 0.884 V and a maximum power density of 562 mW/cm2 at 600 °C. The results imply that high-quality anode-supported electrolyte/anode bilayer structures were successfully fabricated. Based on them, planar anode-supported SOFC stacks will be assembled in the future.  相似文献   

8.
The BaCo0.7Fe0.3?yNbyO3?δ oxides (BCFNy, y = 0.00–0.12) were synthesized by the conventional solid state reaction process and investigated as a novel cathode for intermediate temperature solid oxide fuel cells(IT-SOFCs). Cubic perovskite, with enhanced phase stability at higher Nb concentration, was obtained at y ? 0.04. The unit cell volumes increased with y, reached a maximum at y = 0.10, and then decreased. The niobium doping concentration also had a significant effect on the electrochemical performance of BCFNy materials. Among the various BCFNy oxides tested, BCFN0.10 possessed the smallest interfacial polarization resistance (Rp). The Rp was as low as 0.9406, 0.1300, 0.0211, and 0.0082 Ω cm2 at 500, 600, 700, and 800 °C, respectively. With a 220 μm-thick Sm0.2Ce0.1O1.9 (SDC) as electrolyte and BCFN0.10 as the cathode, a fuel cell provides maximum power densities of 202, 350, 569, 820, and 1006 mW cm?2 at 600, 650, 700, 750, and 800 °C, respectively. The encouraging results suggested that BCFN0.10 was a very promising cathode material for IT-SOFCs.  相似文献   

9.
High performance La2−xSrxCuO4−δ (x = 0.1, 0.3, 0.5) cathode materials for intermediate temperature solid oxide fuel cell (IT-SOFCs) were prepared and characterized. The investigation of electrical properties indicated that La1.7Sr0.3CuO4 cathode has low area specific resistance (ASR) of 0.16 Ω cm2 at 700 °C and 1.2 Ω cm2 at 500 °C in air. The rate-limiting step for oxygen reduction reaction on La1.7Sr0.3CuO4 electrode changed with oxygen partial pressure and measurement temperature. La1.7Sr0.3CuO4 cathode exhibits the lowest overpotential of about 100 mV at a current density of 150 mA cm−2 at 700 °C in air.  相似文献   

10.
We report the world smallest tubular solid oxide fuel cell – needle-type micro SOFCs applicable to micro power devices. The anode-supported cell was prepared using cost effective, conventional extrusion and dip-coating techniques. The diameter of the needle-type cell is 0.4 mm, consisting of NiO-Gd doped Ceria (GDC) for anode (under 100 μm thick), GDC for electrolyte (8 μm thick), and (La, Sr) (Co, Fe)O3 – GDC for cathode. The cell performances of 80, 160 and 300 mW cm−2 at 450 °C, 500 °C, and 550 °C, respectively, were obtained using a simple current collection method with wet H2 fuel. Impedance analysis indicated that the SOFC has a potential to be improved by optimizing the current collection method. Bundle concept using the SOFCs with the packing density of 100 cells in 1 cm3 was also proposed.  相似文献   

11.
Layered perovskite-structure oxides LaBaCuFeO5+x (LBCFO) and LaBaCuCoO5+x (LBCCO) were prepared and the electrical conductivity and electrochemical performance were investigated as potential cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The electrical conductivity of LBCCO is much higher than that of LBCFO. Area specific resistances of LBCFO and LBCCO cathode materials on Ce0.8Sm0.2O1.9 (SDC) electrolyte are as low as 0.21 Ω cm2 and 0.11 Ω cm2 at 700 °C, respectively. The maximum power density of the LBCFO/SDC/Ni-SDC and LBCCO/SDC/Ni-SDC cells with 300 μm thick electrolytes attains 557 mW cm?2 and 603 mW cm?2 at 800 oC, respectively. Preliminary results demonstrated that the layered perovskite-structure oxides LBCFO and LBCCO are very promising cathode materials for application in IT-SOFCs.  相似文献   

12.
Transition-metal doped double-perovskite structure oxides GdBaCo2/3Fe2/3Ni2/3O5+δ (FN-GBCO), GdBaCo2/3Fe2/3Cu2/3O5+δ (FC-GBCO), GdBaCoCuO5+δ (C-GBCO) and pristine GdBaCo2O5+δ (GBCO) were synthesized via a citrate combustion method. The thermal-expansion coefficient (TEC) and electrochemical performance of the oxides were investigated as potential cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The TEC exhibited by the FC-GBCO cathode up to 900 °C is 14.6 × 10?6 °C?1, which is lower than the value of GBCO (19.9 × 10?6 °C?1). Area specific resistances (ASR) of 0.165 Ω cm2 at 700 °C and 0.048 Ω cm2 at 750 °C were achieved for the FC-GBCO cathode on a Ce0.9Gd0.1O1.95 (CGO) electrolyte. An electrolyte supported (300 μm thick) single-cell configuration of FC-GBCO/CGO/Ni-CGO attained a maximum power density of 435 mW cm?2 at 700 °C. The unique composition of GBCO co-doped with Fe and Cu ions in the Co sites exhibited reduced TEC and enhancement of electrochemical performance and good chemical compatibility with CGO, and this composition is proving to be a potential cathode for IT-SOFCs.  相似文献   

13.
Anode-supported solid oxide fuel cells (SOFCs) based on thin BaZr0.8Y0.2O3 ? δ (BZY) electrolyte films were fabricated by pulsed laser deposition (PLD) on sintered NiO–BZY composite anodes. After in situ reduction of NiO to Ni, the anode substrates became porous, while retaining good adhesion with the electrolyte. A slurry-coated composite cathode made of La0.6Sr0.4Co0.2Fe0.8O3 ? δ (LSCF) and BaCe0.9Yb0.1O3 ? δ (BCYb), specifically developed for proton conducting electrolytes, was used to assemble fuel cell prototypes. Depositing by PLD 100 nm thick LSCF porous films onto the BZY thin films was essential to improve the cathode/electrolyte adhesion. A power density output of 110 mW/cm2 at 600 °C, the largest reported value for an anode-supported fuel cell based on BZY at this temperature, was achieved. Electrochemical impedance spectroscopy (EIS) measurements were used to investigate the different contributions to the total polarization losses.  相似文献   

14.
A high performance cathode-supported solid oxide fuel cell (SOFC), suitable for operating in weakly humidified hydrogen and methane, has been developed. The SOFC is essentially made up by a YSZ/LSM composite supporting cathode, a thin YSZ film electrolyte, and a GDC-impregnated La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode. A gas tight thin YSZ film (∼27 μm) was formed during the co-sintering of cathode/electrolyte bi-layer at 1200 °C. The cathode-supported SOFC developed in this study showed encouraging performance with maximum power density of 0.182, 0.419, 0.628 and 0.818 W cm−2 in air/3% H2O–97% H2 (and 0.06, 0.158, 0.221 and 0.352 W cm−2 in air/3% H2O–97% CH4) at 750, 800, 850 and 900 °C, respectively. Such performance is close to that of the cathode-supported cell (0.42 W cm−2 vs. 0.455 W cm−2 in humidified H2 at 800 °C) developed by Yamahara et al. [Solid State Ionics 176 (2005) 451–456] with a Co-infiltrated supporting LSM-YSZ cathode, a (Sc2O3)0.1(Y2O3)0.01(ZrO2)0.89 (SYSZ) electrolyte of 15 μm in thickness and a SYSZ/Ni anode, indicating that the performance of the GDC-impregnated LSCM anode is comparable to that made of Ni cermet while stable in weakly humidified methane fuel.  相似文献   

15.
This paper emphasises the electrochemical and catalytic properties of a Ni–10% GDC (10% gadolinium-doped ceria) cermet anode of a single-chamber solid oxide fuel cell (SC-SOFC). Innovative coupling of electrochemical impedance spectroscopy with gas chromatography measurements was carried out to characterise the anode material using an operando approach. The experiments were conducted in a symmetric anode/electrolyte/anode cell prepared by slurry coating resulting in 100 μm-thick anode layers. The electrochemical performance was assessed using a two-electrode arrangement between 400 °C and 650 °C, in a methane-rich atmosphere containing CH4, O2 and H2O in a 14:2:6 volumetric ratio. The insertion of a Pt–CeO2 based catalyst with high specific surface area inside the cermet layer was found to promote hydrogen production from the Water Gas Shift reaction and consequently to improve the electrochemical performances. Indeed, a promising polarisation resistance value of 12 Ω cm2 was achieved at 600 °C with a catalytic loading of only 15 wt.%.  相似文献   

16.
Herein, the Sr2Fe1.5Mo0.5O6 (SFM) precursor solution is infiltrated into a tri-layered “porous La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM)/dense LSGM/porous LSGM” skeleton to form both SFM/LSGM symmetrical fuel cells and functional fuel cells by adopting an ultra-fast and time-saving procedure. The heating/cooling rate when fabricating is fixed at 200 °C/min. Thanks to the unique cell structure with high thermal shock resistance and matched thermal expansion coefficients (TEC) between SFM and LSGM, no SFM/LSGM interfacial detachment is detected. The polarization resistances (Rp) of SFM/LSGM composite cathode and anode at 650 °C are 0.27 Ω·cm2 and 0.235 Ω·cm2, respectively. These values are even smaller than those of the cells fabricated with traditional method. From scanning electron microscope (SEM), a more homogenous distribution of SFM is identified in the ultra-fast fabricated SFM/LSGM composite, therefore leading to the enhanced performance. This study also strengthens the evidence that SFM can be used as high performance symmetrical electrode material both running in H2 and CH4. When using H2 as fuel, the maximum power density of “SFM-LSGM/LSGM/LSGM-SFM” functional fuel cell at 700 °C is 880 mW cm 2. By using CH4 as fuel, the maximum power densities at 850 and 900 °C are 146 and 306 mW cm 2, respectively.  相似文献   

17.
Y-doped BaZrO3 (BZY) electrolyte films are successfully fabricated by utilizing the driving force from the anode substrate, aiming to circumvent the refractory nature of BZY materials. The BZY electrolyte film on the high shrinkage anode becomes dense after sintering even though no sintering aid is added, while the BZY electrolyte remains porous on the conventional anode substrate after the same treatment. The resulting BZY electrolyte shows a high conductivity of 4.5 × 10 3 S cm 1 at 600 °C, which is 2 to 20 times higher than that for most of BZY electrolyte films in previous reports. In addition, the fuel cell with this BZY electrolyte generates a high power output of 267 mW cm 2 at 600 °C. These results suggest the strategy presented in this study provides a promising way to prepare BZY electrolyte films for fuel cell applications.  相似文献   

18.
The SrSc0.2Co0.8O3−δ (SSC) perovskite was investigated as a cathode material for low temperature solid-oxide fuel cell. The material showed an almost linear thermal expansion from room temperature to 1000 °C in air with the average thermal expansion coefficient of only 16.9 × 10−6 K−1. The Sc-doping made the absence of Co4+ in SSC, which resulted in not only dramatically reduced thermal expansion coefficient but also extremely high oxygen vacancies concentrations in the lattice at low temperature. The area specific polarization resistance was 0.206 Ω cm2 for SSC at 550 °C, which is about 52% lower than the value of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathode. A peak power density as high as 564 mW cm−2 was obtained at 500 °C based on a 20 μm thick Sm0.2Ce0.8O1.9 electrolyte by adopting SSC cathode.  相似文献   

19.
A Y-shaped microfluidic channel is applied for the first time to the construction of a glucose/O2 biofuel cell, based on both laminar flow and biological enzyme strategies. During operation, the fuel and oxidant streams flow parallel at gold electrode surfaces without convective mixing. At the anode, the glucose oxidation is performed by the enzyme glucose oxidase whereas at the cathode, the oxygen is reduced by the enzyme laccase, in the presence of specific redox mediators. Such cell design protects the anode from an interfering parasite reaction of O2 at the anode and offers the advantage of using different streams of oxidant and fuel for optimal performance of the enzymes. Electrochemical characterizations of the device show the influence of the flow rate on the output potential and current density. The maximum power density delivered by the assembled biofuel cell reached 110 μW cm?2 at 0.3 V with 10 mM glucose at 23 °C. The microfluidic approach reported here demonstrates the feasibility of advanced microfabrication techniques to build an efficient microfluidic glucose/O2 biofuel cell device.  相似文献   

20.
We present a proton exchange membrane fuel cell (PEMFC) manufacturing route, in which a thin layer of polymer electrolyte solution is spray-coated on top of gas diffusion electrodes (GDEs) to work as a proton exchange membrane. Without the need for a pre-made membrane foil, this allows inexpensive, fast, large-scale fabrication of membrane-electrode assemblies (MEAs), with a spray-coater comprising the sole manufacturing device. In this work, a catalyst layer and a membrane layer are consecutively sprayed onto a fibrous gas diffusion layer with applied microporous layer as substrate. A fuel cell is then assembled by stacking anode and cathode half-cells with the membrane layers facing each other. The resultant fuel cell with a low catalyst loading of 0.1 mg Pt/cm2 on each anode and cathode side is tested with pure H2 and O2 supply at 80 °C cell temperature and 92% relative humidity at atmospheric pressure. The obtained peak power density is 1.29 W/cm2 at a current density of 3.25 A/cm2. By comparison, a lower peak power density of 0.93 W/cm2 at 2.2 A/cm2 is found for a Nafion NR211 catalyst coated membrane (CCM) reference, although equally thick membrane layers (approx. 25 μm), and identical catalyst layers and gas diffusion media were used. The superior performance of the fuel cell with spray-coated membrane can be explained by a decreased low frequency (mass transport) resistance, especially at high current densities, as determined by electrochemical impedance spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号