首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical reduction of noble metal electrodes in the presence of redox ionic liquid, 1-ferrocenylethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [FcEMIM][TFSI], was investigated by cyclic voltammetry. Our experiments suggest the formation of metal with negative oxidation states, in the cases of platinum and gold electrodes [Mn, FcEMIM+]. By analogy with the previous work, the formation of these phases is concomitant with the insertion of the supporting electrolyte; which correspond in our experimental condition to the redox cation of the ionic liquid. As an exciting result, the electrochemical investigations of the reduced electrode in electrolytic solution, containing solvent and supporting electrolyte, evidence the presence of the ferrocene groups at the electrode surface. Moreover, the reduced electrode exhibits the presence of the ferrocene even after, contact with air, after ultrasound, and after physical polishing, highlighting the large stability of this organo-metallic phases formed in this media. The AFM investigations demonstrate the morphological change of the platinum surface after the reduction process. Finally, our works bring a formal electrochemical proof of the presence of the ionic liquid cation inside the electrode material after the cathodic treatment in this media.  相似文献   

2.
Electrochemical reductive exfoliation of graphite to few layered graphene(FLG) in presence of 1-ethyl-2,3-dimethyl imidazolium bis(trifluoromethylsulfonyl) imide ionic liquid and redox ionic liquid based ferrocene has been investigated. Thus, by applying a mild negative potential(-2.7 V vs. Fc/Fc~+) to carbon electrode in ionic liquid graphene flakes could be generated. The generated materials have been characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, high resolution transmission electron microscopy and atomic force microscopy. XPS and Raman analysis show that the electrochemical reductive exfoliation provides the formation of FLG. The thickness of the resulting FLG was found to be ranged between 4 and1 nm. HR-TEM images reveal the formation of few graphene layers and in some cases single graphene layer was observed.Moreover, this electrochemical route conduces to the formation of ionic liquid functionalized FLG. Finally, the reductive exfoliation was further investigated in the presence of redox ionic liquid. XPS and electrochemical measurements confirm the presence of ferrocene.  相似文献   

3.
A carbon ionic liquid electrode (CILE) was fabricated by mixing N-butylpyridinium hexafluoro-phosphate (BPPF 6 ) with graphite powder and further used for the investigation on the electrochemical behavior of L-tryptophan (Trp). The fabricated CILE showed good conductivity, inherent electrocatalytic ability and strong promotion to the electron transfer of Trp. On the CILE, an irreversible oxidation peak appeared at 0.948 V (vs. saturated calomel reference electrode). For 5.0 × 10−5 M Trp the oxidation peak current increased about 5 times and the oxidation peak potential decreased on 0.092 V compared to carbon paste electrode. The results indicated that an electrocatalytic reaction occurred on CILE. The conditions for the electrochemical detection were optimized and the electrochemical parameters of Trp on CILE were carefully investigated. Under the selected conditions, the oxidation peak current showed linear relationship with Trp concentration in the range of 8.0 × 10−6 ∼1.0 × 10−3 M for cyclic voltammetry and the detection limit was estimated as 4.8 × 10−6 M (3σ). The interferences of other amino acids or metal ions on the determination were tested and the proposed method was successfully applied to the synthetic sample analysis.  相似文献   

4.
Deoxyribonucleic acid (DNA) was electrochemically deposited on a carbon ionic liquid electrode to give a biosensor with excellent redox activity towards paraquat as shown by cyclic voltammetry and differential pulse voltammetry. Experimental conditions were optimized with respect to sensing paraquat by varying the electrochemical parameters, solution pH, and accumulation time of DNA. Under the optimized conditions, a linear relation exists between the reduction peak current and the concentration of paraquat in the range from 5?×?10?8 mol L?1 to 7?×?10?5 mol L?1, with a detection limit of 3.6?×?10?9 mol L?1. The utility of the method is illustrated by successful analysis of paraquat in spiked real water samples.
Figure
The DNA was electrodeposited onto the CILE under +1.5?V for 1200?s. The electrochemical behaviors of paraquat on the modified electrode had been studied by cyclic voltammetry and differential pulse voltammetry. Five ml phosphate buffer (pH 7.0) solution was added into an electrochemical cell (10?ml) and then paraquat was successfully added into the cell. The differential pulse voltammograms were recorded when swept from ?0.8?V to ?0.3?V. The peak currents at about ?0.63?V for paraquat were measured.  相似文献   

5.
The kinetics and selectivity of the oxidation of thiocyanate on a boron-doped diamond (BDD) electrode in a 0.5 M solution of H2SO4 were studied. An analysis of the cyclic voltammetry curves showed that the oxidation of SCN? was irreversible and occurred with diffusion control in the range of water decomposition potentials. The obtained kinetic dependences can be described by the pseudo-first order equation. The apparent rate constant depends on the current density and initial concentration of the reagent. The main product of oxidation at low current density and high concentration of SCN? was CN?.  相似文献   

6.
Electrochemical reduction of the 4-nitrophenyl diazonium salt in ionic liquid media has been investigated at carbon electrode. The ionic liquid chosen for this study was 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI]. The cyclic voltammetry study demonstrated the possibility of the electrochemical grafting of the nitrophenyl groups onto carbon electrode after the reduction of its corresponding diazonium in ionic liquid. The electrochemical characterization of the modified electrode achieved on ionic liquid displays the presence of the nitrophenyl group at the carbon surface. Moreover, the surface concentration of the attached group obtained in this media was found to be around 1.7 × 10−10 mol cm−2, this value may suggest the possibility of the formation of monolayer. Furthermore, the characterization of the modified electrode in [EMIM][TFSI] showed the conversion of some NO2-phenyl groups to NHOH-phenyl. This observation could indicate the presence of surface interaction between the reduced NO2-phenyl and the ionic liquid cation, thanks to the presence of acidic proton in the ionic liquid cation.  相似文献   

7.
The electrochemical behaviors of guanosine on the ionic liquid of N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CPE) was studied in this paper and further used for guanosine detection. Guanosine showed an adsorption irreversible oxidation process on the carbon ionic liquid electrode (CILE) with the oxidation peak potential located at 1.12 V (vs. SCE) in a pH 4.5 Britton-Robinson (B-R) buffer solution. Compared with that on the traditional carbon paste electrode, small shift of the oxidation peak potentials appeared but with a great increment of the oxidation peak current on the CILE, which was due to the presence of ionic liquid in the modified electrode adsorbed the guanosine on the surface and promoted the electrochemical response. The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n), and the electrode reaction standard rate constant (ks) were calculated as 0.74, 1.9 and 1.26 × 10−4 s−1, respectively. Under the optimal conditions the oxidation peak current showed a good linear relationship with the guanosine concentration in the range from 1.0 × 10−6 to 1.0 × 10−4 mol/L by cyclic voltammetry with the detection limit of 2.61 × 10−7 mol/L (3σ). The common coexisting substances showed no interferences to the guanosine oxidation. The CILE showed good ability to distinguish the electrochemical response of guanosine and guanine in the mixture solution. The urine samples were further detected by the proposed method with satisfactory results.  相似文献   

8.
制备了1-丁基-3-甲基咪唑六氟磷酸盐(BM IMPF6)室温离子液体修饰电极,用循环伏安法研究氧氟沙星在该修饰电极上的电化学行为,结果表明该电极过程受吸附控制。计算了电极过程的部分动力学参数:转移电子数n=2,电极有效面积A=0.0502 cm2。用方波溶出伏安法优化了测定参数,测定了浓度与峰电流ipa的线性关系,发现ipa与氧氟沙星浓度在5.0×10-7~6.0×10-5mol/L范围内呈线性关系,检出限为2.8×10-7mol/L,样品回收率为93.2%~108.2%,可直接用于实际样品中氧氟沙星含量的测定。  相似文献   

9.
A carbon ionic liquid electrode (CILE) was used for the investigation of the electrochemical oxidation of phenolic compounds in acidic media using cyclic voltammetry, chronoamperometry and square wave voltammetry techniques. The results indicate that, contrary to many other electrodes, the oxidation of phenolic compounds on CILE is highly stable and does not result in electrode fouling. Cyclic voltammetry showed that phenolic compounds such as phenol, 2,4-dichlorophenol and catechol were oxidized at CILE and remained electroactive after multiple cycles and at high concentrations of phenol. The cyclic voltammetric response of the CILE is very stable with more than 99% of the initial activity remaining after 20 s of stirring of a 0.5 mM solution of phenol.  相似文献   

10.
利用离子液体1-丁基-3-甲基咪唑四氟硼酸盐(BMIMBF4)对玻碳电极(GCE)进行修饰,制备了BMI-MBF4/GCE电极.在0.1mol/L的磷酸盐缓冲溶液中,采用循环伏安法研究了抗坏血酸在BMIMBF4/GCE电极和裸玻碳电极(GCE)上的电化学行为.结果表明,pH=5.7的磷酸盐缓冲溶液为最佳测定底液,最佳富集时间为120s;BMIMBF4/GCE对抗坏血酸的氧化反应有很好的电化学催化作用.抗坏血酸的氧化峰电流与其浓度在2.0×10-4~1.0×10-2 mol/L的范围内呈良好的线性关系,相对标准偏差为4.53%(n=5).  相似文献   

11.
用疏水性离子液体1-丁基-3-甲基咪唑六氟磷酸([BMIM]PF6)作粘合剂制备了离子液体修饰碳糊电极(IL/CPE)。采用循环伏安法(CV)研究了维生素E(vitamin E,VE)的氧化产物生育酚红在IL/CPE和未修饰碳糊电极(CPE)上的电化学行为,结果表明生育酚红在IL/CPE上氧化过程更易于进行,峰电流响应ip也明显增加,表明IL/CPE对生育酚红的氧化还原反应具有良好的电催化作用。同时测定了电极过程的动力学参数:电荷转移系数α=0.8746,扩散系数D=1.65×10-3cm2/s,电极反应速率常数kf=6.64×10-2cm/s。采用方波伏安法(SWV)发现生育酚红氧化峰电流与其浓度在1.53×10-4mol/L~8.39×10-7mol/L范围内呈线性关系,检出限为1.58×10-8mol/L。该法可用于VE实际样品的分析测定。  相似文献   

12.
Stable heme proteins entrapped in dimethylformamide (DMF)–chitosan organohydrogel films modified electrodes were operated in neat hydrophilic room-temperature ionic liquid (IL) [bmim][BF4] for the first time. The modified electrodes possess outstanding electrochemical response in [bmim][BF4] without adding water. The morphology studies of films were demonstrated by atomic force microscopy (AFM). UV–Vis and FTIR spectroscopy showed that the heme proteins retained their native structure in organohydrogel films. Direct electrochemistry and bioelectrocatalysis of heme protein–organohydrogel films were investigated. Several electrochemical parameters such as the charge transfer coefficients (α) and the apparent electron transfer rate constant (ks) of these processes were calculated by performing nonlinear regression analysis of square wave voltammetry (SWV) experimental dates. Furthermore, high electrocatalytic activity to hydrogen peroxide (H2O2) was observed, indicating that heme proteins entrapped in organohydrogel films retained their bioelectrocatalytic activities in [bmim][BF4]. Kinetic analysis of the cyclic voltammetry dates shows that heme protein–organohydrogel films operated in IL bring up to an enhancement of the biosensor sensitivity and a high affinity for H2O2.  相似文献   

13.
The electrochemical behavior of paracetamol in 0.1 M acetate buffer solution (pH 4.6) was investigated at a traditional carbon paste electrode (TCPE) and a carbon ionic liquid electrode (CILE) fabricated by replacing nonconductive organic binders with a conductive hydrophobic room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6). The results showed that the CILE exhibited better reversibility for the electrochemical redox of paracetamol. The oxidation potential of paracetamol at the CILE is +0.462 V, which is approximately 232 mV lower than that at the TCPE; the oxidation peak current response is nine times higher than that at the TCPE. The differential pulse voltammetric determination of paracetamol at the CILE was established based on this behavior. After optimizing several important parameters controlling the performance of paracetamol at the CILE, the oxidation peak current versus paracetamol concentration at the CILE showed linearity in the range from 1.0 μM to 2.0 mM (R 2  = 0.9992) with a detection limit of 0.3 μM (S/N = 3). The method has been applied to the determination of paracetamol in tablets and urine samples and the average recovery of paracetamol was 98.5% and 99.3%, respectively. The proposed CILE showed good sensitivity and reproducible response without influence of interferents commonly existing in pharmaceutical and urine samples. Figure CV curves of paracetamol illustrate the enhanced electrochemical behavior of paracetamol at the CILE (b), which forms the basis for the differential pulse voltammetric determination of paracetamol  相似文献   

14.
用亲水性离子液体1-丁基-3-甲基咪唑四氟硼酸作修饰剂制备了离子液体修饰碳糊电极(IL/CPE).在pH4.78的Britton-Robinison缓冲溶液中,用循环伏安法和方波伏安法研究了对乙酰氨基酚在IL/CPE上的电化学行为.研究表明,IL/CPE对对乙酰氨基酚的氧化还原反应有良好的电催化作用.在方波伏安曲线上,对乙酰氨基酚的氧化电流与其浓度在8.0×10<'-7>~2.0×10<'-4>mol/L范围内呈线性关系,检出限为3.0×10<'-7>mol/L(S/N=3).建立了测定片剂中对乙酰氨基酚含量的新方法.  相似文献   

15.
用离子液体1-丁基吡啶六氟磷酸盐(BuPyPF6)作为粘合剂构置了碳离子液体修饰电极(BuPyPF6-CILE).在0.05 mol/L H2SO4溶液中,用循环伏安法研究了在BuPyPF6-CILE和传统碳糊电极(TCPE)上酚磺乙胺(ESL)的电化学行为,建立了测定尿样和血清样品中ESL含量的新方法.ESL在BuPyPF6-CILE上的氧化峰电流响应是其在TCPE上的8.7倍,峰电位差降低到0.101 V,电子转移速率常数Ks=0.544 s-1,电极表面平均吸附量为1.66×10-9 mol·cm2.ESL的氧化电流与其浓度在8.0×10-8~2.0×10-6mol/L和5.0×10-6~1.0×10-4mol/L范围内呈线性关系,检出限为3×10-8mol/L(S/N=3).连续5次测定2.0×10-6mol/L ESL溶液的RSD为1.5%.  相似文献   

16.
A simple, sensitive, and reliable method based on a multi-walled carbon nanotubes (MWNTs) modified carbon ionic liquid electrode (CILE) has been successfully developed for determination of dopamine (DA) in the presence of ascorbic acid (AA). The acid-treated MWNTs with carboxylic acid functional groups could promote the electron-transfer reaction of DA and inhibit the voltammetric response of AA. Due to the good performance of the ionic liquid, the electrochemical response of DA on the MWNTs/CILE was better than that of other MWNTs modified electrodes. Under the optimum conditions a linear calibration plot was obtained in the range 5.0×10(-8) to 2.0×10(-4) mol L(-1) and the detection limit was 1.0×10(-8) mol L(-1).  相似文献   

17.
18.
Electrochemical reduction of CO2 to CO is an interesting topic. In this work, we prepared metal-free electrodes by depositing graphene oxide (GO), multi-walled carbon nanotube (MWCNT), and GO/MWCNT composites on carbon paper (CP) using electrophoretic deposition (EPD) method. The electrodes were characterized by different methods, such as X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrochemical reduction of CO2 to CO was conducted on the electrodes in 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4)/acetonitrile (MeCN) electrolyte, and the composition of the electrolyte influenced the reaction significantly. It was demonstrated that GO/MWCNT-CP electrode was very effective for the reaction in IL (90 wt%)/MeCN binary mixture, the Faradaic efficiency of CO and current density were even higher than those on Au and Ag electrodes in the same electrolyte.  相似文献   

19.
The similar electrochemical oxidation behaviors of hydroxypivalaldehyde in ionic liquids (ILs) medium, C4MIMPF6, C4MIMBF4 and CsMIMPF6, are investigated using classic electrochemical methods, respectively. Only the product, hydroxypivalic acid is detected by high performance liquid chromatography (HPLC). It can be conferred that the electrochemical oxidation of hydroxypivalaldehyde consists of two successive one-electron irreversible reactions at glass carbon (GC) electrode and the possible reaction mechanism in the ILs is proposed firstly. The diffusion coefficients of hydroxypivalaldehyde are obtained according to the electrochemical characteristics of hydroxypivalaldehyde in C4MIMPF6, C4MIMBF4 and CsMIMPF6.  相似文献   

20.
We present here the results on the use of 1-n-butyl-3-methylimidazolium methylselenite, [bmim][SeO2(OCH3)], in the synthesis of symmetrical disulfides starting from thiols. This efficient and improved method is general for aromatic, aliphatic, and functionalized thiols affording the disulfides in good to excellent yields after easy work up. The use of a microwave accelerates the reaction and the [bmim][SeO2(OCH3)] was reused for further oxidation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号