首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saleh FS  Mao L  Ohsaka T 《The Analyst》2012,137(9):2233-2238
A new type of dehydrogenase-based amperometric glucose biosensor was constructed using glucose dehydrogenase (GDH) which was immobilized on the edge-plane pyrolytic graphite (EPPG) electrode modified with poly(phenosafranin)-functionalized single-walled carbon nanotubes (PPS-SWCNTs). The PPS-SWCNT-modified EPPG electrode was prepared by electropolymerization of phenosafranin on the EPPG electrode which had been previously coated with SWCNTs. The performance of the GDH/PPS-SWCNT/EPPG bioanode was evaluated using cyclic voltammetry and amperometry in the presence of glucose. The GDH/PPS-SWCNT/EPPG electrode possesses promising characteristics as a glucose sensor: a wide linear dynamic range of 50 to 700 μM, low detection limit of 0.3 μM, fast response time (1-2 s), high sensitivity (96.5 μA cm(-2) mM(-1)), and anti-interference and anti-fouling abilities. Moreover, the performance of the GDH/PPS-SWCNT/EPPG bioanode was tested in a glucose/O(2) biofuel cell. The maximum power density delivered by the assembled glucose/O(2) biofuel cell could reach 64.0 μW cm(-2) at a cell voltage of 0.3 V with 40 mM glucose.  相似文献   

2.
The present study reports the development of operational membrane-less glucose/O2 biofuel cell based on oxygen contactor. Glucose oxidation was performed by glucose oxidase (GOx) co-immobilized with the mediator 8-hydroxyquinoline-5-sulfonic acid hydrate (HQS) at the anode, whereas oxygen was reduced by laccase co-immobilized with 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS2−) at the cathode. Both enzymes and mediators were immobilized within electropolymerized polypyrrole polymers.Nevertheless, this system is limited by the secondary reaction of O2 electro-reduction at the anode that reduces the electron flow through the anode and thus the output voltage. In order to avoid the loss of current at the anode in glucose/O2 biofuel cell, we developed a strategy to supply dissolved oxygen separate from the electrolyte. Porous carbon tubes were used as electrodes and modified on the external surface by the couple enzyme/mediator. The inside of the cathode tube was continuously supplied with saturated dioxygen solution diffusing from the inner to the external surface of the porous tube. The assembled biofuel cell was studied under nitrogen at 37 °C in phosphate buffer at pH 5.0 and 7.0. The maximum power density reached 27 μW cm−2 at a cell voltage of 0.25 V at pH 5.0 with 10 mM glucose. The power density was twice as high as compared to the same system with oxygen bubbling directly in the cell.  相似文献   

3.
A concentric glucose/O2 biofuel cell has been developed. The device is constituted of two carbon tubular electrodes, one in the other, and combines glucose electrooxidation at the anode and oxygen electroreduction at the cathode. The anodic catalyst is glucose oxidase co-immobilized with the mediator 8-hydroxyquinoline-5-sulfonic acid hydrate, and the cathodic catalyst is bilirubin oxidase co-immobilized with the mediator 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt. Both enzymes and mediators are entrapped at the surface of the tubular electrodes by an electrogenerated polypyrrole polymer. The originality of the concentric configuration is to compartmentalize the anode and cathode electrodes and to supply dissolved oxygen separate from the electrolyte in order to avoid secondary reactions. The dissolved oxygen circulates through the inside of the cathode tube and diffuses from the inner to the external surface of the tube to react directly with the immobilized bilirubin oxidase. The assembled biofuel cell is studied at 37 °C in phosphate buffer pH 7.4. We show the influence of the thickness of the polypyrrole polymer on the electrochemical activity of the biocathodes. We also demonstrate the effect of the chemical reticulation of the enzymes by glutaraldehyde within the polymer on the performances of the bioelectrodes. The maximum power density delivered by the assembled glucose/O2 biofuel cell reaches 42 μW cm−2, evaluated from the geometric area of the electrodes, at a cell voltage of 0.30 V with 10 mM glucose. The results demonstrate that the concentric design of the BFC based on compartmented electrodes is a promising architecture for further development of micro electronic devices.  相似文献   

4.
Multilayer film of laccase, poly-l-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV–vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)n multilayer modified electrode catalyzed four-electron reduction of O2 to water, without any mediator. The possible application of the laccase-catalyzed O2 reduction at the (MWNTs/PLL/laccase)n multilayer modified ITO electrode was illustrated by constructing a glucose/O2 biofuel cell with the (MWNTs/thionine/AuNPs)8 GDH film modified ITO electrode as a bioanode and the (MWNTs/PLL/laccase)15 film modified ITO electrode as a biocathode. The open-circuit voltage reached to 700 mV, and the maximum power density achieved 329 μW cm−2 at 470 mV of the cell voltage.  相似文献   

5.
This study demonstrates a new kind of miniature glucose/O2 biofuel cells (BFCs) based on carbon fiber microelectrodes (CFMEs) modified with single-walled carbon nanotubes (SWNTs). SWNTs are used as a support both for stably confining the electrocatalyst (i.e., methylene green, MG) for the oxidation of NADH and the anodic biocatalyst (i.e., NAD+-dependent glucose dehydrogenase, GDH) for the oxidation of glucose and for efficiently facilitating direct electrochemistry of the cathodic biocatalyst (i.e., laccase) for the O2 reduction. The prepared micro-sized GDH-based bioanode and laccase-based biocathode exhibit good bioelectrocatalytic activity toward the oxidation of glucose and the reduction of oxygen, respectively. In 0.10 M phosphate buffer containing 10 mM NAD+ and 45 mM glucose under ambient air, the power density of the assembled miniature compartment-less glucose/O2 BFC reaches 58 μW cm−2 at 0.40 V. The stability of the miniature glucose/O2 BFC is also evaluated.  相似文献   

6.
This study demonstrates a new kind of single-walled carbon nanotubes (SWNT)-based compartment-less glucose/O2 biofuel cell (BFC) with glucose dehydrogenase (GDH) and bilirubin oxidase (BOD) as the anodic and cathodic biocatalysts, respectively, and with poly(brilliant creysl blue) (BCB) adsorbed onto SWNT nanocomposite as the electrocatalyst for the oxidation of NADH. The prepared GDH-polyBCB-SWNT bioanode exhibits an excellent electrocatalytic activity toward the oxidation of glucose biofuel; in 0.10 M phosphate buffer containing 20 mM NAD+ and 100 mM glucose, the oxidation of glucose commences at −0.25 V and the current reaches its maximum of 310 μA/cm2 at −0.05 V vs. Ag/AgCl. At the BOD-SWNT biocathode, a high potential output is achieved for the reduction of O2 due to the direct electron transfer property of BOD at the SWNTs. In 0.10 M phosphate buffer, the electrocatalytic reduction of O2 is observed at a high potential of 0.53 V vs. Ag/AgCl with an electrocatalytic current plateau of ca. 28 μA/cm2 at 0.45 V under ambient air and ca. 102 μA/cm2 under O2-saturated atmosphere. In 0.10 M phosphate buffer containing 10 mM NAD+ and 40 mM glucose under O2-saturated atmosphere, the power density of the assembled SWNT-based glucose/O2 BFC reaches 53.9 μW/cm2 at 0.50 V. The performance and the stability of the glucose/O2 BFC are also evaluated in serum. This study could offer a new route to the development of new kinds of enzymatic BFCs with a high performance and provide useful information on future studies on the enzymatic BFCs as in vivo power sources.  相似文献   

7.
We report the fabrication and characterisation of a non-compartmentalised, mediator and cofactor free glucose-oxygen biofuel cell based on adsorbed enzymes exhibiting direct bioelectrocatalysis, viz. cellobiose dehydrogenase from Dichomera saubinetii and laccase from Trametes hirsuta as the anodic and cathodic bioelements, respectively, with the following characteristics: an open-circuit voltage of 0.73 V; a maximum power density of 5 microW cm(-2) at 0.5 V of the cell voltage and an estimated half-life of > 38 h in air-saturated 0.1 M citrate-phosphate buffer, pH 4.5 containing 5 mM glucose.  相似文献   

8.
We report the highest power biofuel cell operating at the lowest concentration to date: 5 mM glucose concentration.  相似文献   

9.
A pyrroloquinoline quinone (PQQ) monolayer-functionalized-Au-electrode and a microperoxidase-11 (MP-11)-modified Au-electrode are used as catalytic anode and cathode in a biofuel cell element, respectively. The cathodic oxidizer is H2O2 whereas the anodic fuel-substrate is 1,4-dihydronicotinamide adenine dinucleotide, NADH. The PQQ-monolayer electrode catalyzes the oxidation of NADH in the presence of Ca2+ ions. The MP-11-functionalized electrode catalyzes the reduction of H2O2. The biofuel cell generates an open-circuit voltage, Voc, of ca. 320 mV and a short-circuit current density, Isc, of ca. 30 μA·cm−2. The maximum electrical power, Wmax, extracted from the cell is 8 μW at an external load of 3 kΩ. The fill factor of the biofuel cell, f=Wmax·Isc−1·Voc−1, is ca. 25%.  相似文献   

10.
Membrane-less and mediator-free direct electron transfer enzymatic biofuel cells (BFCs) with bioelectrodes comprised of single wall carbon nanotubes (SWNTs) deposited by two methods on porous silicon (pSi) substrates, are reported. In one method the SWNTs were grown by chemical vapor deposition (CVD) and then functionalized with carboxylic groups, and in the second method, pre-synthesized carboxylated SWNTs (c-SWNTs) were electrophoretically deposited on gold-coated pSi. Anodic glucose oxidase (GOx) and cathodic laccase (Lac) were immobilized on the pSi/SWNT substrates to form BFCs in pH 7 phosphate buffer solution. A peak power density of 1.38 μW/cm2 (with a lifetime of 24 h) down to 0.3 μW/cm2 was obtained for a BFC comprised of c-SWNT/enzyme electrodes in 4 mM glucose solution as fuel, corresponding to normal blood sugar concentration, and air as oxidant. BFCs of this relatively simple architecture have the potential for further optimization of power output and lifetime.  相似文献   

11.
Biofuel cells have a tremendous opportunity to provide much higher energy densities and smaller footprints than batteries for powering implantable medical devices, leading to less intrusive implantable devices with longer lifetimes. This paper introduces biofuel cell anode and cathode designs based on mediated glucose oxidation by glucose oxidase and oxygen reduction by bilirubin oxidase, respectively. We report here the progress toward the development of components for biofuel cells working in physiological conditions. We have investigated enzymatic electrode formulations that have the potential to achieve higher current densities and longer stability of the electrodes: (a) high surface area by the use of multiscale carbon materials, (b) immobilization of redox mediator on the electrode surface, and (c) use of a protective biocompatible polymer coating. Part of this work was presented at the 213th Electrochemical Society Meeting as a poster  相似文献   

12.
13.
14.
Nanostructured bioelectrodes were designed and assembled into a biofuel cell with no separating membrane. The glassy carbon electrodes were modified with mediator-functionalized carbon nanotubes. Ferrocene (Fc) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) bound chemically to the carbon nanotubes were found useful as mediators of the enzyme catalyzed electrode processes. Glucose oxidase from Aspergillus niger AM-11 and laccase from Cerrena unicolor C-139 were incorporated in a liquid-crystalline matrix-monoolein cubic phase. The carbon nanotubes–nanostructured electrode surface was covered with the cubic phase film containing the enzyme and acted as the catalytic surface for the oxidation of glucose and reduction of oxygen. Thanks to the mediating role of derivatized nanotubes the catalysis was almost ten times more efficient than on the GCE electrodes: catalytic current of glucose oxidation was 1 mA cm−2 and oxygen reduction current exceeded 0.6 mA cm−2. The open circuit voltage of the biofuel cell was 0.43 V. Application of carbon nanotubes increased the maximum power output of the constructed biofuel cell to 100 μW cm−2 without stirring of the solution which was ca. 100 times more efficient than using the same bioelectrodes without nanotubes on the electrode surface.  相似文献   

15.
A Y-shaped microfluidic channel is applied for the first time to the construction of a glucose/O2 biofuel cell, based on both laminar flow and biological enzyme strategies. During operation, the fuel and oxidant streams flow parallel at gold electrode surfaces without convective mixing. At the anode, the glucose oxidation is performed by the enzyme glucose oxidase whereas at the cathode, the oxygen is reduced by the enzyme laccase, in the presence of specific redox mediators. Such cell design protects the anode from an interfering parasite reaction of O2 at the anode and offers the advantage of using different streams of oxidant and fuel for optimal performance of the enzymes. Electrochemical characterizations of the device show the influence of the flow rate on the output potential and current density. The maximum power density delivered by the assembled biofuel cell reached 110 μW cm?2 at 0.3 V with 10 mM glucose at 23 °C. The microfluidic approach reported here demonstrates the feasibility of advanced microfabrication techniques to build an efficient microfluidic glucose/O2 biofuel cell device.  相似文献   

16.
One of the limitations of lab-on-a-chip technology has been the lack of integrated power supplies for powering various devices on the chip. This research focused on design of a stackable, microchip-based biofuel cell. The biofuel cell is powered by the addition of ethanol through a flow channel to a bioanode. The bioanode contains a micromolded carbon ink anode that has been modified with two layers. The first layer is poly(methylene green), which is an electrocatalyst for NADH oxidation; the second layer is a membrane that contains an immobilized enzyme, alcohol dehydrogenase. Each layer was characterized electrochemically. It was found that the poly(methylene green) layer is kinetically-limited, but when the complete bioanode is formed, the bioanode is diffusion-limited due to slow mass transport of NADH within the modified Nafion membrane. When used relative to an external platinum cathode, the biofuel cell showed maximum open circuit potentials of 0.34 V and maximum current densities of 53.0 +/- 9.1 microA cm(-2). This research demonstrates the feasibility of a microfabricated biofuel cell device.  相似文献   

17.
The present work aims at improving the barrier properties of high molecular weight Polyethylene/ graphene nanoplatelets (HMWPE/GnP) nanocomposites by aligning the embedded modified graphene nanoparticles in a magnetic field. Graphene nanoplatelets (GnP) were modified by magnetic Fe2O3 to produce Fe2O3-modified Graphene, GnP-mFe2O3. The magnetic properties of Fe2O3 were previously characterized by the vibrating sample magnetometer (VSM) method and resulting GnP-mFe2O3 nanoparticles were characterized by Fourier transform infrared (FTIR) analysis. HMWPE/GnP nanocomposites were prepared via melt mixing. The prepared nanocomposites were sheeted at high temperatures in a magnetic field using a hot press. The barrier properties of prepared films, HMWPE/GnP and HMWPE/GnP-mFe2O3 were characterized by carrying out a permeation to oxygen experiment as a function of GnP and GnP-mFe2O3 contents. A decrease in gas transmission rate (GTR) was observed for the samples after being subjected to the magnetic field compared to the non-treated sample. The results of differential scanning calorimetry (DSC) and field emission electron microscopy (FESEM) experiments confirmed the orientation of GnP-mFe2O3 nanoparticles in nanocomposites.  相似文献   

18.
Mesoporous silicon membranes are functionalized with ammonium groups and evaluated as high efficient anion exchange membrane in a miniaturized alkaline glucose fuel cell setup. N-Trimethoxysilylpropyl-N,N,N-trimethylammonium chloride is grafted onto the pore walls of porous silicon resulting in the anionic conductivity enhancement. The functionalization process is followed by FTIR spectroscopy where the optimized parameter could be determined. The ionic conductivity is measured using impedance spectroscopy and gives 5.6 mS cm 1. These modified mesoporous silicon membranes are integrated in a specially designed miniature alkaline (pH 13) glucose/air fuel cell prototype using a conventional platinum-carbon anode and a cobalt phthalocyanine-carbon nanotube cathode. The enhanced anion conductivity of these membranes leads to peak power densities of 7 ± 0.12 mW cm 2 at “air breathing” conditions at room temperature.  相似文献   

19.
制备了Ti/SnO2+Sb2O3/Fe-PbO2阳极,采用SEM、XRD和ICP对电极的表面形貌和组成进行了表征.为了考察电极的电催化活性,以苯酚为目标污染物,进行了电催化降解实验.研究结果表明Ti/SnO2+Sb2O3/Fe-PbO2电极电催化降解苯酚模拟废水的最佳工艺条件为:电流密度10mA/cm2、支持电解质Na2SO4浓度0.05 mol/L、温度25℃.在25℃时苯酚的电催化氧化降解反应遵循一级反应动力学规律,并且苯酚的电催化氧化主要是·OH参与的间接氧化,反应过程中电极表面产生的羟基自由基对苯酚的氧化去除起着主要作用.  相似文献   

20.
Boland S  Leech D 《The Analyst》2012,137(1):113-117
Highly ordered macroporous electrodes are prepared by electro-deposition of gold through a polystyrene sphere template. Drop-coating redox polymer and either glucose oxidase, for the anode, or Melanocarpus albomyces laccase, for the cathode on the macroporous gold provides film-coated electrodes for assembly of membrane-less glucose/oxygen enzymatic fuel cells (EFC) in pH 7.4 buffer containing 10 mM glucose and 0.15 M NaCl. Under these conditions the maximum power density of 17 μW cm(-2) for EFCs using films adsorbed to planar gold electrodes increased to 38 μW cm(-2) for films adsorbed to 2? sphere gold macroporous electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号